Hören und Lesen

Tritt ein in eine Welt voller Geschichten

  • Mehr als 600.000 Hörbücher und E-Book
  • Jederzeit kündbar
  • Exklusive Titel und Originals
  • komfortabler Kinder-Modus
Abonniere jetzt
se-device-image-1200x1200
Cover for JMP for Mixed Models
Sprachen
Englisch
Format
Kategorie

Sachbuch

Discover the power of mixed models with JMP and JMP Pro.

Mixed models are now the mainstream method of choice for analyzing experimental data. Why? They are arguably the most straightforward and powerful way to handle correlated observations in designed experiments. Reaching well beyond standard linear models, mixed models enable you to make accurate and precise inferences about your experiments and to gain deeper understanding of sources of signal and noise in the system under study. Well-formed fixed and random effects generalize well and help you make the best data-driven decisions.

JMP for Mixed Models brings together two of the strongest traditions in SAS software: mixed models and JMP. JMP’s groundbreaking philosophy of tight integration of statistics with dynamic graphics is an ideal milieu within which to learn and apply mixed models, also known as hierarchical linear or multilevel models. If you are a scientist or engineer, the methods described herein can revolutionize how you analyze experimental data without the need to write code.

Inside you’ll find a rich collection of examples and a step-by-step approach to mixed model mastery. Topics include:

• Learning how to appropriately recognize, set up, and interpret fixed and random effects

• Extending analysis of variance (ANOVA) and linear regression to numerous mixed model designs

• Understanding how degrees of freedom work using Skeleton ANOVA

• Analyzing randomized block, split-plot, longitudinal, and repeated measures designs

• Introducing more advanced methods such as spatial covariance and generalized linear mixed models

• Simulating mixed models to assess power and other important sampling characteristics

• Providing a solid framework for understanding statistical modeling in general

• Improving perspective on modern dilemmas around Bayesian methods, p-values, and causal inference

© 2021 SAS Institute (E-Book): 9781952363856

Erscheinungsdatum

E-Book: 9. Juni 2021

Wähle dein Abo-Modell

  • Über 600.000 Titel

  • Lade Titel herunter mit dem Offline Modus

  • Exklusive Titel und Storytel Originals

  • Sicher für Kinder (Kindermodus)

  • Einfach jederzeit kündbar

Basic

Für alle, die gelegentlich hören und lesen.

7.90 € /Monat

7 Tage kostenlos
  • Jederzeit kündbar

  • Abo-Upgrade jederzeit möglich

Jetzt ausprobieren
Am beliebtesten!

Unlimited

Für alle, die unbegrenzt hören und lesen möchten.

18.90 € /Monat

7 Tage kostenlos
  • Jederzeit kündbar

  • Wechsel zu Basic jederzeit möglich

Jetzt ausprobieren

Anderen gefällt...