Hören und Lesen

Tritt ein in eine Welt voller Geschichten

  • Mehr als 600.000 Hörbücher und E-Book
  • Jederzeit kündbar
  • Exklusive Titel und Originals
  • komfortabler Kinder-Modus
Abonniere jetzt
se-device-image-1200x1200
Cover for Neuronale Netze und Deep Learning kapieren: Der einfache Praxiseinstieg mit Beispielen in Python

Neuronale Netze und Deep Learning kapieren: Der einfache Praxiseinstieg mit Beispielen in Python

Sprachen
Deutsch
Format
Kategorie

Sachbuch

Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-Algorithmen Anschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPy Keine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlich

Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht.

Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz.

Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen. Aus dem Inhalt:

• Parametrische und nichtparametrische Modelle

• Überwachtes und unüberwachtes Lernen

• Vorhersagen mit mehreren Ein- und Ausgaben

• Fehler messen und verringern

• Hot und Cold Learning

• Batch- und stochastischer Gradientenabstieg

• Überanpassung vermeiden

• Generalisierung

• Dropout-Verfahren

• Backpropagation und Forward Propagation

• Bilderkennung

• Verarbeitung natürlicher Sprache (NLP)

• Sprachmodellierung

• Aktivierungsfunktionen

• Sigmoid-Funktion

• Tangens hyperbolicus

• Softmax

• Convolutional Neural Networks (CNNs)

• Recurrent Neural Networks (RNNs)

• Long Short-Term Memory (LSTM)

• Deep-Learning-Framework erstellen

© 2019 MITP (E-Book): 9783747500170

Erscheinungsdatum

E-Book: 21. November 2019

Tags

    Wähle dein Abo-Modell

    • Über 600.000 Titel

    • Lade Titel herunter mit dem Offline Modus

    • Exklusive Titel und Storytel Originals

    • Sicher für Kinder (Kindermodus)

    • Einfach jederzeit kündbar

    Am beliebtesten!

    Unlimited

    Für alle, die unbegrenzt hören und lesen möchten.

    18.90 € /Monat
    7 Tage kostenlos
    • 1 Konto

    • Unbegrenzter Zugriff

    • Jederzeit kündbar

    • Wechsel zu Basic jederzeit möglich

    Jetzt ausprobieren

    Basic

    Für alle, die gelegentlich hören und lesen.

    7.90 € /Monat
    7 Tage kostenlos
    • 1 Konto

    • 20 Stunden/pro Monat

    • Jederzeit kündbar

    • Abo-Upgrade jederzeit möglich

    Jetzt ausprobieren