الاستماع والقراءة

خطوة إلى عالم لا حدود له من القصص

  • اقرأ واستمع إلى ما تريده
  • أكثر من مليون عنوان
  • العناوين الحصرية + أصول القصة
  • 7 الشهر يورو في EGP89 يوم تجربة مجانية، ثم
  • من السهل الإلغاء في أي وقت
اشترك الآن
Details page - Device banner - 894x1036
Cover for Pretrain Vision and Large Language Models in Python: End-to-end techniques for building and deploying foundation models on AWS

Pretrain Vision and Large Language Models in Python: End-to-end techniques for building and deploying foundation models on AWS

لغات
اللغة الإنجليزية
الصيغة
تصنيف

كتب واقعية

Master the art of training vision and large language models with conceptual fundaments and industry-expert guidance. Learn about AWS services and design patterns, with relevant coding examples

Key Features

Learn to develop, train, tune, and apply foundation models with optimized end-to-end pipelines

Explore large-scale distributed training for models and datasets with AWS and SageMaker examples

Evaluate, deploy, and operationalize your custom models with bias detection and pipeline monitoring

Book Description

Foundation models have forever changed machine learning. From BERT to ChatGPT, CLIP to Stable Diffusion, when billions of parameters are combined with large datasets and hundreds to thousands of GPUs, the result is nothing short of record-breaking. The recommendations, advice, and code samples in this book will help you pretrain and fine-tune your own foundation models from scratch on AWS and Amazon SageMaker, while applying them to hundreds of use cases across your organization.

With advice from seasoned AWS and machine learning expert Emily Webber, this book helps you learn everything you need to go from project ideation to dataset preparation, training, evaluation, and deployment for large language, vision, and multimodal models. With step-by-step explanations of essential concepts and practical examples, you’ll go from mastering the concept of pretraining to preparing your dataset and model, configuring your environment, training, fine-tuning, evaluating, deploying, and optimizing your foundation models.

You will learn how to apply the scaling laws to distributing your model and dataset over multiple GPUs, remove bias, achieve high throughput, and build deployment pipelines.

By the end of this book, you’ll be well equipped to embark on your own project to pretrain and fine-tune the foundation models of the future.

What you will learn

Find the right use cases and datasets for pretraining and fine-tuning

Prepare for large-scale training with custom accelerators and GPUs

Configure environments on AWS and SageMaker to maximize performance

Select hyperparameters based on your model and constraints

Distribute your model and dataset using many types of parallelism

Avoid pitfalls with job restarts, intermittent health checks, and more

Evaluate your model with quantitative and qualitative insights

Deploy your models with runtime improvements and monitoring pipelines

Who this book is for

If you’re a machine learning researcher or enthusiast who wants to start a foundation modelling project, this book is for you. Applied scientists, data scientists, machine learning engineers, solution architects, product managers, and students will all benefit from this book. Intermediate Python is a must, along with introductory concepts of cloud computing. A strong understanding of deep learning fundamentals is needed, while advanced topics will be explained. The content covers advanced machine learning and cloud techniques, explaining them in an actionable, easy-to-understand way.

© 2023 Packt Publishing (كتاب إلكتروني): 9781804612545

تاريخ النشر

كتاب إلكتروني: ٣١ مايو ٢٠٢٣

واستمتع آخرون أيضًا...

ما مميزات اشتراك Storytel؟

  • أكثر من 200000 عنوان

  • وضع الأطفال (بيئة آمنة للأطفال)

  • تنزيل الكتب للوصول إليها دون الاتصال بالإنترنت

  • الإلغاء في أي وقت

أكثر شهرة

شهري

قصص لكل المناسبات.

89 EGP / شهر
7 أيام مجانًا
  • حساب واحد

  • حساب بلا حدود

  • 1 حساب

  • استماع بلا حدود

  • إلغاء في أي وقت

جرب الآن

سنويا

قصص لكل المناسبات.

708 EGP /سنة
7 أيام مجانًا
وفر 33%
  • حساب واحد

  • حساب بلا حدود

  • 1 حساب

  • استماع بلا حدود

  • إلغاء في أي وقت

جرب الآن

6 أشهر

قصص لكل المناسبات.

474 EGP /ستة أشهر
7 أيام مجانًا
وفر 12%
  • حساب واحد

  • حساب بلا حدود

  • 1 حساب

  • استماع بلا حدود

  • إلغاء في أي وقت

جرب الآن