خطوة إلى عالم لا حدود له من القصص
كتب واقعية
In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications. Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification. By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.
© 2023 Packt Publishing (كتاب ): 9781805120919
تاريخ الإصدار
كتاب : ٢٠ ديسمبر ٢٠٢٣
الوسوم
أكثر من 200000 عنوان
وضع الأطفال (بيئة آمنة للأطفال)
تنزيل الكتب للوصول إليها دون الاتصال بالإنترنت
الإلغاء في أي وقت
قصص لكل المناسبات.
حساب واحد
حساب بلا حدود
1 حساب
استماع بلا حدود
إلغاء في أي وقت
قصص لكل المناسبات.
حساب واحد
حساب بلا حدود
1 حساب
استماع بلا حدود
إلغاء في أي وقت
قصص لكل المناسبات.
حساب واحد
حساب بلا حدود
1 حساب
استماع بلا حدود
إلغاء في أي وقت
عربي
مصر