Escucha y lee

Entra en un mundo infinito de historias

  • Vive la experiencia de leer y escuchar todo lo que quieras
  • Más de 650.000 títulos
  • Títulos en exclusiva y Storytel Originals
  • Primeros 14 días gratis, luego 8,99 €/mes
  • Cancela cuando quieras
Suscríbete ahora
Details page - Device banner - 894x1036
Cover for DINO: Self-Supervised Vision Transformers Explained

DINO: Self-Supervised Vision Transformers Explained

Idioma
Inglés
Formato
Categoría

No ficción

"DINO: Self-Supervised Vision Transformers Explained"

"DINO: Self-Supervised Vision Transformers Explained" offers a comprehensive and rigorous exploration of one of the most influential self-supervised learning methods for visual representation—DINO—as applied to Vision Transformers (ViTs). The book opens by charting the evolution of computer vision, tracing the shift from traditional supervised and convolutional paradigms to the rise of transformer-based architectures and self-supervised learning. With a clear-eyed examination of the limitations of supervised methods and the architectural motivations behind modern transformers, readers are equipped with foundational knowledge that frames the necessity and promise of self-supervised ViTs.

Delving into the heart of DINO, the text systematically unpacks the method’s core concepts, including teacher-student architectures, self-distillation mechanics, and multi-crop augmentation strategies. Readers will find in-depth technical discussions on essential components such as multi-head self-attention, positional encoding, projection heads, and key regularization techniques. Practical engineering guidance accompanies theoretical explanations, featuring detailed advice on large-scale pretraining, distributed training, augmentation strategies, parameter tuning, and troubleshooting instability—making this work both accessible and actionable for practitioners and researchers.

Beyond the mechanics of model training, the book thoughtfully addresses the evaluation and deployment of DINO models in real-world and cross-domain scenarios—from medical imaging to satellite and industrial vision. It provides comparative studies with other self-supervised paradigms, best practices for reproducibility and open-source collaboration, and careful consideration of security, privacy, fairness, and ethical deployment. Concluding with a forward-looking view, the book identifies open research challenges and opportunities for DINO, positioning it as an essential reference for anyone seeking to understand or advance the field of self-supervised vision transformers.

© 2025 HiTeX Press (Ebook): 6610000973330

Fecha de lanzamiento

Ebook: 24 de julio de 2025

Etiquetas

    Otros también disfrutaron ...

    Elige el plan:

    • Más de 650.000 títulos

    • Kids mode

    • Modo sin conexión

    • Cancela cuando quieras

    Más popular

    Unlimited

    Para los que quieren escuchar y leer sin límites.

    8.99 € /mes

    14 días gratis
    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Suscríbete ahora

    Family

    Para los que quieren compartir historias con su familia y amigos.

    Desde 15.99 € /mes

    • Escucha y lee los títulos que quieras

    • Modo sin conexión + Kids Mode

    • Cancela en cualquier momento

    Tú + 1 miembro de la familia2 cuentas

    15.99 € /mes

    Pruébalo ahora