Escucha y lee

Entra en un mundo infinito de historias

  • Vive la experiencia de leer y escuchar todo lo que quieras
  • Más de 650.000 títulos
  • Títulos en exclusiva y Storytel Originals
  • Primeros 14 días gratis, luego 8,99 €/mes
  • Cancela cuando quieras
Suscríbete ahora
Details page - Device banner - 894x1036
Cover for Hands-On Reinforcement Learning for Games: Implementing self-learning agents in games using artificial intelligence techniques

Hands-On Reinforcement Learning for Games: Implementing self-learning agents in games using artificial intelligence techniques

Idioma
Inglés
Formato
Categoría

No ficción

Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow

Key Features

• Get to grips with the different reinforcement and DRL algorithms for game development

• Learn how to implement components such as artificial agents, map and level generation, and audio generation

• Gain insights into cutting-edge RL research and understand how it is similar to artificial general research

Book Description

With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python.

Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent's productivity. As you advance, you'll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games.

By the end of this book, you'll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.

What you will learn

• Understand how deep learning can be integrated into an RL agent

• Explore basic to advanced algorithms commonly used in game development

• Build agents that can learn and solve problems in all types of environments

• Train a Deep Q-Network (DQN) agent to solve the CartPole balancing problem

• Develop game AI agents by understanding the mechanism behind complex AI

• Integrate all the concepts learned into new projects or gaming agents

Who this book is for

If you're a game developer looking to implement AI techniques to build next-generation games from scratch, this book is for you. Machine learning and deep learning practitioners, and RL researchers who want to understand how to use self-learning agents in the game domain will also find this book useful. Knowledge of game development and Python programming experience are required.

© 2020 Packt Publishing (Ebook): 9781839216770

Fecha de lanzamiento

Ebook: 3 de enero de 2020

Otros también disfrutaron ...

Elige el plan:

  • Más de 650.000 títulos

  • Kids mode

  • Modo sin conexión

  • Cancela cuando quieras

¡Más popular!

Unlimited

Para los que quieren escuchar y leer sin límites.

8.99 € /mes

14 días gratis
  • Escucha y lee los títulos que quieras

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

Pruébalo ahora

Family

Para los que quieren compartir historias con su familia y amigos.

Desde 15.99 € /mes

  • Escucha y lee los títulos que quieras

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

Tú + 1 miembro de la familia2 cuentas

15.99 € /mes

Pruébalo ahora