Entra en un mundo infinito de historias
No ficción
Hyperparameters are an important element in building useful machine learning models. This book curates numerous hyperparameter tuning methods for Python, one of the most popular coding languages for machine learning. Alongside in-depth explanations of how each method works, you will use a decision map that can help you identify the best tuning method for your requirements.
You’ll start with an introduction to hyperparameter tuning and understand why it's important. Next, you'll learn the best methods for hyperparameter tuning for a variety of use cases and specific algorithm types. This book will not only cover the usual grid or random search but also other powerful underdog methods. Individual chapters are also dedicated to the three main groups of hyperparameter tuning methods: exhaustive search, heuristic search, Bayesian optimization, and multi-fidelity optimization. Later, you will learn about top frameworks like Scikit, Hyperopt, Optuna, NNI, and DEAP to implement hyperparameter tuning. Finally, you will cover hyperparameters of popular algorithms and best practices that will help you efficiently tune your hyperparameter.
By the end of this book, you will have the skills you need to take full control over your machine learning models and get the best models for the best results.
© 2022 Packt Publishing (ebook ): 9781803241944
Fecha de lanzamiento
ebook : 29 de julio de 2022
Etiquetas
Más de 650.000 títulos
Kids mode
Modo sin conexión
Cancela cuando quieras
Para los que quieren escuchar y leer sin límites.
1 cuenta
Acceso ilimitado
Escucha y lee los títulos que quieras
Modo sin conexión + Kids Mode
Cancela en cualquier momento
Para los que quieren compartir historias con su familia y amigos.
2-3 cuentas
Acceso ilimitado
Escucha y lee los títulos que quieras
Modo sin conexión + Kids Mode
Cancela en cualquier momento
2 cuentas
15.99 € /mesEspañol
España