Escucha y lee

Entra en un mundo infinito de historias

  • Vive la experiencia de leer y escuchar todo lo que quieras
  • Más de 650.000 títulos
  • Títulos en exclusiva y Storytel Originals
  • Primeros 14 días gratis, luego 8,99 €/mes
  • Cancela cuando quieras
Suscríbete ahora
Details page - Device banner - 894x1036
Cover for Interpretability and Explainability in AI Using Python

Interpretability and Explainability in AI Using Python

Idioma
Inglés
Formato
Categoría

No ficción

Demystify AI Decisions and Master Interpretability and Explainability Today

Book Description

Interpretability in AI/ML refers to the ability to understand and explain how a model arrives at its predictions. It ensures that humans can follow the model's reasoning, making it easier to debug, validate, and trust.

Interpretability and Explainability in AI Using Python takes you on a structured journey through interpretability and explainability techniques for both white-box and black-box models.

You’ll start with foundational concepts in interpretable machine learning, exploring different model types and their transparency levels. As you progress, you’ll dive into post-hoc methods, feature effect analysis, anchors, and counterfactuals—powerful tools to decode complex models. The book also covers explainability in deep learning, including Neural Networks, Transformers, and Large Language Models (LLMs), equipping you with strategies to uncover decision-making patterns in AI systems.

Through hands-on Python examples, you’ll learn how to apply these techniques in real-world scenarios. By the end, you’ll be well-versed in choosing the right interpretability methods, implementing them efficiently, and ensuring AI models align with ethical and regulatory standards—giving you a competitive edge in the evolving AI landscape.

Table of Contents

1. Interpreting Interpretable Machine Learning 2. Model Types and Interpretability Techniques 3. Interpretability Taxonomy and Techniques 4. Feature Effects Analysis with Plots 5. Post-Hoc Methods 6. Anchors and Counterfactuals 7. Interpretability in Neural Networks 8. Explainable Neural Networks 9. Explainability in Transformers and Large Language Models 10. Explainability and Responsible AI

Index

© 2025 Orange Education Pvt Ltd (Ebook): 9789348107749

Fecha de lanzamiento

Ebook: 15 de abril de 2025

Otros también disfrutaron ...

Elige el plan:

  • Más de 650.000 títulos

  • Kids mode

  • Modo sin conexión

  • Cancela cuando quieras

¡Más popular!

Unlimited

Para los que quieren escuchar y leer sin límites.

8.99 € /mes
14 días gratis
  • 1 cuenta

  • Acceso ilimitado

  • Escucha y lee los títulos que quieras

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

Suscríbete ahora

Family

Para los que quieren compartir historias con su familia y amigos.

Desde 15.99 €/mes
  • 2-3 cuentas

  • Acceso ilimitado

  • Escucha y lee los títulos que quieras

  • Modo sin conexión + Kids Mode

  • Cancela en cualquier momento

2 cuentas

15.99 € /mes
Pruébalo ahora