Kuuntele missä ja milloin haluat
Tietokirjallisuus
Tackle the complex challenges faced while building end-to-end deep learning models using modern R libraries
Key Features
• Understand the intricacies of R deep learning packages to perform a range of deep learning tasks
•
• Implement deep learning techniques and algorithms for real-world use cases
•
• Explore various state-of-the-art techniques for fine-tuning neural network models
Book Description
Deep learning (DL) has evolved in recent years with developments such as generative adversarial networks (GANs), variational autoencoders (VAEs), and deep reinforcement learning. This book will get you up and running with R 3.5.x to help you implement DL techniques.
The book starts with the various DL techniques that you can implement in your apps. A unique set of recipes will help you solve binomial and multinomial classification problems, and perform regression and hyperparameter optimization. To help you gain hands-on experience of concepts, the book features recipes for implementing convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Long short-term memory (LSTMs) networks, as well as sequence-to-sequence models and reinforcement learning. You'll then learn about high-performance computation using GPUs, along with learning about parallel computation capabilities in R. Later, you'll explore libraries, such as MXNet, that are designed for GPU computing and state-of-the-art DL. Finally, you'll discover how to solve different problems in NLP, object detection, and action identification, before understanding how to use pre-trained models in DL apps.
By the end of this book, you'll have comprehensive knowledge of DL and DL packages, and be able to develop effective solutions for different DL problems.
What you will learn
• Work with different datasets for image classification using CNNs
•
• Apply transfer learning to solve complex computer vision problems
•
• Use RNNs and their variants such as LSTMs and Gated Recurrent Units (GRUs) for sequence data generation and classification
•
• Implement autoencoders for DL tasks such as dimensionality reduction, denoising, and image colorization
•
• Build deep generative models to create photorealistic images using GANs and VAEs
•
• Use MXNet to accelerate the training of DL models through distributed computing
Who this book is for
This deep learning book is for data scientists, machine learning practitioners, deep learning researchers and AI enthusiasts who want to learn key tasks in deep learning domains using a recipe-based approach. A strong understanding of machine learning and working knowledge of the R programming language is mandatory.
© 2020 Packt Publishing (E-kirja): 9781789808278
Julkaisupäivä
E-kirja: 21. helmikuuta 2020
Avainsanat
Yli miljoona tarinaa
Suosituksia juuri sinulle
Uusia Storytel Originals + eksklusiivisia sisältöjä kuukausittain
Turvallinen Kids Mode
Ei sitoutumisaikaa
Sinulle joka kuuntelet säännöllisesti.
1 käyttäjätili
50 tuntia/kuukausi
Ei sitoutumisaikaa
Sinulle joka kuuntelet ja luet usein.
1 käyttäjätili
100 tuntia/kuukausi
Ei sitoutumisaikaa
Sinulle joka haluat rajattomasti tarinoita.
1 käyttäjätili
Kuuntele ja lue rajattomasti
Ei sitoutumisaikaa
Kun haluat jakaa tarinoita perheen kanssa.
2-6 tiliä
100 tuntia/kk jokaiselle käyttäjälle
Ei sitoutumisaikaa
2 käyttäjätiliä
26.99 € /kuukausiSinulle joka kuuntelet vähemmän.
1 käyttäjätili
20 tuntia/kuukausi
Säästä käyttämättömät tunnit, max 20h
Ei sitoutumisaikaa
Suomi
Suomi