Tietokirjallisuus
Probabilistic Graphical Models is a technique in machine learning that uses the concepts of graph theory to compactly represent and optimally predict values in our data problems. In real world problems, it's often difficult to select the appropriate graphical model as well as the appropriate inference algorithm, which can make a huge difference in computation time and accuracy. Thus, it is crucial to know the working details of these algorithms.
This book starts with the basics of probability theory and graph theory, then goes on to discuss various models and inference algorithms. All the different types of models are discussed along with code examples to create and modify them, and also to run different inference algorithms on them. There is a complete chapter devoted to the most widely used networks Naive Bayes Model and Hidden Markov Models (HMMs). These models have been thoroughly discussed using real-world examples.
© 2015 Packt Publishing (E-kirja): 9781784395216
Julkaisupäivä
E-kirja: 3. elokuuta 2015
Yli miljoona tarinaa
Suosituksia juuri sinulle
Uusia Storytel Original + muita eksklusiivisia sisältöjä kuukausittain
Turvallinen Kids Mode
Ei sitoutumisaikaa
Sinulle joka kuuntelet ja luet usein.
19.99 € /kuukausi
Ei sitoutumisaikaa
Sinulle joka kuuntelet säännöllisesti.
16.99 € /kuukausi
Ei sitoutumisaikaa
Sinulle joka kuuntelet vähemmän.
9.99 € /kuukausi
Säästä käyttämättömät tunnit, max 20h
Ei sitoutumisaikaa
Sinulle joka haluat rajattomasti tarinoita.
29.99 € /kuukausi
Ei sitoutumisaikaa
Kun haluat jakaa tarinoita perheen kanssa.
Alkaen 26.99 € /kuukausi
Ei sitoutumisaikaa
26.99 € /kuukausi