Dengarkan dan baca

Masuki dunia cerita tanpa batas

  • Baca dan dengarkan sebanyak yang Anda mau
  • Lebih dari 1 juta judul
  • Judul eksklusif + Storytel Original
  • Uji coba gratis 14 hari, lalu €9,99/bulan
  • Mudah untuk membatalkan kapan saja
Coba gratis
Details page - Device banner - 894x1036
Cover for Bayesian Analysis with Python

Bayesian Analysis with Python

1 Rating

5

Bahasa
Inggris
Format
Kategori

Non Fiksi

Unleash the power and flexibility of the Bayesian framework

About This Book

• Simplify the Bayes process for solving complex statistical problems using Python;

• Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises;

• Learn how and when to use Bayesian analysis in your applications with this guide.

Who This Book Is For

Students, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed.

What You Will Learn • Understand the essentials Bayesian concepts from a practical point of view

• Learn how to build probabilistic models using the Python library PyMC3

• Acquire the skills to sanity-check your models and modify them if necessary

• Add structure to your models and get the advantages of hierarchical models

• Find out how different models can be used to answer different data analysis questions

• When in doubt, learn to choose between alternative models.

• Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression.

• Learn how to think probabilistically and unleash the power and flexibility of the Bayesian framework

In Detail

The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view.

Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.

Style and approach

Bayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.

© 2016 Packt Publishing (Ebook): 9781785889851

Tanggal rilis

Ebook: 25 November 2016

Yang lain juga menikmati...

Selalu dengan Storytel

  • Lebih dari 900.000 judul

  • Mode Anak (lingkungan aman untuk anak)

  • Unduh buku untuk akses offline

  • Batalkan kapan saja

Terpopuler

Premium

Bagi yang ingin mendengarkan dan membaca tanpa batas.

Rp39000 /bulan

7 hari gratis
  • Akses bulanan tanpa batas

  • Batalkan kapan saja

  • Judul dalam bahasa Inggris dan Indonesia

Coba sekarang

Premium 6 bulan

Bagi yang ingin mendengarkan dan membaca tanpa batas

Rp189000 /6 bulan

7 hari gratis
Hemat 19%
  • Akses bulanan tanpa batas

  • Batalkan kapan saja

  • Judul dalam bahasa Inggris dan Indonesia

Coba sekarang

Local

Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.

Rp19900 /bulan

7 hari gratis
  • Akses tidak terbatas

  • Batalkan kapan saja

  • Judul dalam bahasa Indonesia

Coba sekarang

Local 6 bulan

Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.

Rp89000 /6 bulan

7 hari gratis
Hemat 25%
  • Akses tidak terbatas

  • Batalkan kapan saja

  • Judul dalam bahasa Indonesia

Coba sekarang