Masuki dunia cerita tanpa batas
Non Fiksi
"Bootstrapping Language-Image Pretraining"
"Bootstrapping Language-Image Pretraining" is a comprehensive guide to the cutting-edge field of multimodal AI, offering an in-depth exploration of how models learn from both language and visual data. The book begins with a strong conceptual foundation, delving into the key principles that distinguish multimodal pretraining from traditional, unimodal approaches. It offers a rigorous examination of joint representation learning, architectural paradigms—such as alignment versus fusion—and the critical bottlenecks that underpin robust vision-language models. Readers are introduced to influential early models, benchmark datasets, and the practical challenges involved in handling rich, heterogeneous data.
In subsequent chapters, the book surveys the architectural building blocks powering today’s most advanced systems, from vision and text encoders to sophisticated cross-modal attention mechanisms and scalable fusion strategies. Detailed attention is given to the principles and practices of self-supervised learning and bootstrapping, including innovative data augmentation techniques, curriculum learning, and mechanism for leveraging weak supervision at scale. Methods for contrastive and generative pretraining are thoroughly analyzed, along with the multi-objective loss functions and large-scale distributed optimization that enable modern models to learn rich and transferable representations from massive, noisy datasets.
Recognizing the real-world impact of such technologies, the volume dedicates essential chapters to the responsible deployment of multimodal AI. It presents practical strategies to mitigate bias, bolster model robustness, and promote transparency and fairness across modalities. The book closes with an authoritative survey of evaluation protocols and emerging research frontiers, including instruction tuning, multilingual pretraining, and privacy-preserving approaches. "Bootstrapping Language-Image Pretraining" serves as an essential resource for researchers and practitioners seeking both a foundational understanding and a forward-looking roadmap in the pursuit of next-generation vision-language intelligence.
© 2025 HiTeX Press (Ebook): 6610000964604
Tanggal rilis
Ebook: 11 Juli 2025
Tag
Lebih dari 900.000 judul
Mode Anak (lingkungan aman untuk anak)
Unduh buku untuk akses offline
Batalkan kapan saja
Bagi yang ingin mendengarkan dan membaca tanpa batas.
1 akun
Akses Tanpa Batas
Akses bulanan tanpa batas
Batalkan kapan saja
Judul dalam bahasa Inggris dan Indonesia
Bagi yang ingin mendengarkan dan membaca tanpa batas
1 akun
Akses Tanpa Batas
Akses bulanan tanpa batas
Batalkan kapan saja
Judul dalam bahasa Inggris dan Indonesia
Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.
1 akun
Akses Tanpa Batas
Akses tidak terbatas
Batalkan kapan saja
Judul dalam bahasa Indonesia
Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.
1 akun
Akses Tanpa Batas
Akses tidak terbatas
Batalkan kapan saja
Judul dalam bahasa Indonesia
Bahasa Indonesia
Indonesia