Dengarkan dan baca

Masuki dunia cerita tanpa batas

  • Baca dan dengarkan sebanyak yang Anda mau
  • Lebih dari 1 juta judul
  • Judul eksklusif + Storytel Original
  • Uji coba gratis 14 hari, lalu €9,99/bulan
  • Mudah untuk membatalkan kapan saja
Coba gratis
Details page - Device banner - 894x1036
Cover for Interpretability and Explainability in AI Using Python

Interpretability and Explainability in AI Using Python

Bahasa
Inggris
Format
Kategori

Non Fiksi

Demystify AI Decisions and Master Interpretability and Explainability Today

Book Description

Interpretability in AI/ML refers to the ability to understand and explain how a model arrives at its predictions. It ensures that humans can follow the model's reasoning, making it easier to debug, validate, and trust.

Interpretability and Explainability in AI Using Python takes you on a structured journey through interpretability and explainability techniques for both white-box and black-box models.

You’ll start with foundational concepts in interpretable machine learning, exploring different model types and their transparency levels. As you progress, you’ll dive into post-hoc methods, feature effect analysis, anchors, and counterfactuals—powerful tools to decode complex models. The book also covers explainability in deep learning, including Neural Networks, Transformers, and Large Language Models (LLMs), equipping you with strategies to uncover decision-making patterns in AI systems.

Through hands-on Python examples, you’ll learn how to apply these techniques in real-world scenarios. By the end, you’ll be well-versed in choosing the right interpretability methods, implementing them efficiently, and ensuring AI models align with ethical and regulatory standards—giving you a competitive edge in the evolving AI landscape.

Table of Contents

1. Interpreting Interpretable Machine Learning 2. Model Types and Interpretability Techniques 3. Interpretability Taxonomy and Techniques 4. Feature Effects Analysis with Plots 5. Post-Hoc Methods 6. Anchors and Counterfactuals 7. Interpretability in Neural Networks 8. Explainable Neural Networks 9. Explainability in Transformers and Large Language Models 10. Explainability and Responsible AI

Index

© 2025 Orange Education Pvt Ltd (Ebook): 9789348107749

Tanggal rilis

Ebook: 15 April 2025

Yang lain juga menikmati...

Selalu dengan Storytel

  • Lebih dari 900.000 judul

  • Mode Anak (lingkungan aman untuk anak)

  • Unduh buku untuk akses offline

  • Batalkan kapan saja

Terpopuler

Premium

Bagi yang ingin mendengarkan dan membaca tanpa batas.

Rp39000 /bulan
7 hari gratis
  • 1 akun

  • Akses Tanpa Batas

  • Akses bulanan tanpa batas

  • Batalkan kapan saja

  • Judul dalam bahasa Inggris dan Indonesia

Coba sekarang

Premium 6 bulan

Bagi yang ingin mendengarkan dan membaca tanpa batas

Rp189000 /6 bulan
7 hari gratis
Hemat 19%
  • 1 akun

  • Akses Tanpa Batas

  • Akses bulanan tanpa batas

  • Batalkan kapan saja

  • Judul dalam bahasa Inggris dan Indonesia

Coba sekarang

Local

Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.

Rp19900 /bulan
7 hari gratis
  • 1 akun

  • Akses Tanpa Batas

  • Akses tidak terbatas

  • Batalkan kapan saja

  • Judul dalam bahasa Indonesia

Coba sekarang

Local 6 bulan

Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.

Rp89000 /6 bulan
7 hari gratis
Hemat 25%
  • 1 akun

  • Akses Tanpa Batas

  • Akses tidak terbatas

  • Batalkan kapan saja

  • Judul dalam bahasa Indonesia

Coba sekarang