Masuki dunia cerita tanpa batas
Non Fiksi
Streamline data preprocessing and feature engineering in your machine learning project with this third edition of the Python Feature Engineering Cookbook to make your data preparation more efficient. This guide addresses common challenges, such as imputing missing values and encoding categorical variables using practical solutions and open source Python libraries. You’ll learn advanced techniques for transforming numerical variables, discretizing variables, and dealing with outliers. Each chapter offers step-by-step instructions and real-world examples, helping you understand when and how to apply various transformations for well-prepared data. The book explores feature extraction from complex data types such as dates, times, and text. You’ll see how to create new features through mathematical operations and decision trees and use advanced tools like Featuretools and tsfresh to extract features from relational data and time series. By the end, you’ll be ready to build reproducible feature engineering pipelines that can be easily deployed into production, optimizing data preprocessing workflows and enhancing machine learning model performance.
© 2024 Packt Publishing (Ebook): 9781835883594
Tanggal rilis
Ebook: 30 Agustus 2024
Lebih dari 900.000 judul
Mode Anak (lingkungan aman untuk anak)
Unduh buku untuk akses offline
Batalkan kapan saja
Bagi yang ingin mendengarkan dan membaca tanpa batas.
Rp39000 /bulan
Akses bulanan tanpa batas
Batalkan kapan saja
Judul dalam bahasa Inggris dan Indonesia
Bagi yang ingin mendengarkan dan membaca tanpa batas
Rp189000 /6 bulan
Akses bulanan tanpa batas
Batalkan kapan saja
Judul dalam bahasa Inggris dan Indonesia
Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.
Rp19900 /bulan
Akses tidak terbatas
Batalkan kapan saja
Judul dalam bahasa Indonesia
Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.
Rp89000 /6 bulan
Akses tidak terbatas
Batalkan kapan saja
Judul dalam bahasa Indonesia
Bahasa Indonesia
Indonesia
