Dengarkan dan baca

Masuki dunia cerita tanpa batas

  • Baca dan dengarkan sebanyak yang Anda mau
  • Lebih dari 1 juta judul
  • Judul eksklusif + Storytel Original
  • Uji coba gratis 14 hari, lalu €9,99/bulan
  • Mudah untuk membatalkan kapan saja
Coba gratis
Details page - Device banner - 894x1036
Cover for Transformers in Deep Learning Architecture: Definitive Reference for Developers and Engineers

Transformers in Deep Learning Architecture: Definitive Reference for Developers and Engineers

Bahasa
Inggris
Format
Kategori

Non Fiksi

"Transformers in Deep Learning Architecture"

"Transformers in Deep Learning Architecture" presents a comprehensive and rigorous exploration of the transformer paradigm—the foundational architecture that has revolutionized modern artificial intelligence. The book opens by situating transformers within the historical context of neural sequence models, methodically tracing their evolution from recurrent neural networks to the self-attention mechanisms that address their predecessor’s limitations. Early chapters lay a strong mathematical and conceptual foundation, introducing key terminology, theoretical principles, and detailed comparisons with alternative architectures to prepare readers for a deep technical dive.

At its core, the book delivers an in-depth analysis of the architectural details and operational intricacies that underpin transformer models. Subsequent chapters dissect the encoder-decoder framework, decompose self-attention and multi-head attention mechanisms, and discuss design choices such as positional encodings, feedforward networks, normalization strategies, and scaling laws. Readers also encounter a nuanced treatment of advanced attention variants—including efficient, sparse, and cross-modal extensions—along with proven paradigms for pretraining, transfer learning, and domain adaptation. Rich case studies illustrate the extraordinary performance of transformers in natural language processing, vision, audio, and multimodal tasks, highlighting both established applications and emerging frontiers.

Beyond technical mastery, the book addresses the practical dimensions and responsible deployment of large transformer models. It guides practitioners through scalable training, distributed modernization, and infrastructure optimization, while confronting contemporary challenges in interpretability, robustness, ethics, and privacy. The final chapters forecast the transformative future of the field with discussions on long-context modeling, symbolic integration, neuromorphic and quantum-inspired approaches, and the profound societal implications of widespread transformer adoption. Altogether, this volume stands as both an authoritative reference and a visionary roadmap for researchers and engineers working at the cutting edge of deep learning.

© 2025 HiTeX Press (Ebook): 6610000817047

Tanggal rilis

Ebook: 28 Mei 2025

Tag

    Yang lain juga menikmati...

    Selalu dengan Storytel

    • Lebih dari 900.000 judul

    • Mode Anak (lingkungan aman untuk anak)

    • Unduh buku untuk akses offline

    • Batalkan kapan saja

    Terpopuler

    Premium

    Bagi yang ingin mendengarkan dan membaca tanpa batas.

    Rp39000 /bulan

    • Akses bulanan tanpa batas

    • Batalkan kapan saja

    • Judul dalam bahasa Inggris dan Indonesia

    Coba sekarang

    Premium 6 bulan

    Bagi yang ingin mendengarkan dan membaca tanpa batas

    Rp189000 /6 bulan

    Hemat 19%
    • Akses bulanan tanpa batas

    • Batalkan kapan saja

    • Judul dalam bahasa Inggris dan Indonesia

    Coba sekarang

    Local

    Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.

    Rp19900 /bulan

    • Akses tidak terbatas

    • Batalkan kapan saja

    • Judul dalam bahasa Indonesia

    Coba sekarang

    Local 6 bulan

    Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.

    Rp89000 /6 bulan

    Hemat 25%
    • Akses tidak terbatas

    • Batalkan kapan saja

    • Judul dalam bahasa Indonesia

    Coba sekarang