Masuki dunia cerita tanpa batas
Non Fiksi
"TVM: Compiler Infrastructure for Deep Learning Optimization"
"TVM: Compiler Infrastructure for Deep Learning Optimization" delivers a comprehensive exploration of the principles, architecture, and cutting-edge techniques underlying TVM—a pioneering open-source compiler stack designed to optimize and deploy deep learning models across a diverse range of hardware backends. Beginning with an incisive overview of why traditional compilers fall short for deep learning workloads, the book guides readers through key foundations such as computational graph abstractions, intermediate representations, and performance-driven compilation strategies that empower model portability and efficiency.
The text meticulously details TVM’s layered system architecture, covering components such as the Relay high-level IR, the tensor expression language and scheduling primitives, as well as framework integration and extensibility for custom operators and hardware targets. Advanced chapters delve into specialized topics including graph transformations, backend-specific code generation for CPUs, GPUs, NPUs, and FPGAs, and fine-grained scheduling optimizations enabled by AutoTVM and meta-scheduling. Practical insights into memory management, automatic differentiation, and debugging tools illuminate the complexities of optimizing neural networks for both cloud-scale and edge deployments.
With dedicated sections addressing deployment pipelines, security, interoperability with serving and cloud-native infrastructure, and best practices for extending the ecosystem, this book serves as both an in-depth reference and a practical guide for engineers, researchers, and practitioners. The concluding chapters look toward the frontier of the field—discussing formal verification, privacy-preserving compilation, sparse workload optimization, and anticipated hardware trends—making this an indispensable resource for anyone involved in deep learning systems, compiler design, or hardware-software co-design.
© 2025 HiTeX Press (Ebook): 6610001024598
Tanggal rilis
Ebook: 20 Agustus 2025
Tag
Lebih dari 900.000 judul
Mode Anak (lingkungan aman untuk anak)
Unduh buku untuk akses offline
Batalkan kapan saja
Bagi yang ingin mendengarkan dan membaca tanpa batas.
Rp39000 /bulan
Akses bulanan tanpa batas
Batalkan kapan saja
Judul dalam bahasa Inggris dan Indonesia
Bagi yang ingin mendengarkan dan membaca tanpa batas
Rp189000 /6 bulan
Akses bulanan tanpa batas
Batalkan kapan saja
Judul dalam bahasa Inggris dan Indonesia
Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.
Rp19900 /bulan
Akses tidak terbatas
Batalkan kapan saja
Judul dalam bahasa Indonesia
Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.
Rp89000 /6 bulan
Akses tidak terbatas
Batalkan kapan saja
Judul dalam bahasa Indonesia
Bahasa Indonesia
Indonesia
