Masuki dunia cerita tanpa batas
Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics.
These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow. Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished.
The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang-Baxter equation.
© 2011 Princeton University Press (buku elektronik ): 9781400838998
Tanggal rilis
buku elektronik : 5 Juli 2011
Lebih dari 900.000 judul
Mode Anak (lingkungan aman untuk anak)
Unduh buku untuk akses offline
Batalkan kapan saja
Bagi yang ingin mendengarkan dan membaca tanpa batas.
1 akun
Akses Tanpa Batas
Akses bulanan tanpa batas
Batalkan kapan saja
Judul dalam bahasa Inggris dan Indonesia
Bagi yang ingin mendengarkan dan membaca tanpa batas
1 akun
Akses Tanpa Batas
Akses bulanan tanpa batas
Batalkan kapan saja
Judul dalam bahasa Inggris dan Indonesia
Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.
1 akun
Akses Tanpa Batas
Akses tidak terbatas
Batalkan kapan saja
Judul dalam bahasa Indonesia
Bagi yang hanya ingin mendengarkan dan membaca dalam bahasa lokal.
1 akun
Akses Tanpa Batas
Akses tidak terbatas
Batalkan kapan saja
Judul dalam bahasa Indonesia
Bahasa Indonesia
Indonesia