היכנסו לעולם אינסופי של סיפורים
The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches, one by Ahmed Abbes and Michel Gros, the other by Takeshi Tsuji. The authors mainly focus on generalized representations of the fundamental group that are p-adically close to the trivial representation.
The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The authors show the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the volume contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored. The authors present a new approach based on a generalization of P. Deligne's covanishing topos.
© 2016 Princeton University Press (ספר דיגיטלי ): 9781400881239
תאריך הוצאה
ספר דיגיטלי : 9 בפברואר 2016
תגיות
מאות אלפי ספרים
מצב ילדים (תוכן שמתאים לקטנטנים)
הורדת ספרים לקריאה והאזנה בלי אינטרנט
אפשר לבטל בכל עת
האזנה וקריאה בלי הגבלה.
חשבון 1
גישה בלתי מוגבלת
האזנה וקריאה בלי הגבלה
קריאה והאזנה גם בלי אינטרנט
אפשר לבטל בכל עת
גלו ספרים לכל המשפחה. היכנסו יחד לתוך עולם של סיפורים.
2 חשבונות
גישה בלתי מוגבלת
שני חשבונות
האזנה וקריאה בלי הגבלה
אפשר לבטל בכל עת
עִברִית
ישראל