#99 Post-Deployment Data Science

#99 Post-Deployment Data Science

0 Umsagnir
0
Episode
85 of 354
Lengd
33Mín.
Tungumál
enska
Gerð
Flokkur
Viðskiptabækur

Many machine learning practitioners dedicate most of their attention to creating and deploying models that solve business problems. However, what happens post-deployment? And how should data teams go about monitoring models in production?

Hakim Elakhrass is the Co-Founder and CEO of NannyML, an open-source python library that allows users to estimate post-deployment model performance, detect data drift, and link data drift alerts back to model performance changes. Originally, Hakim started a machine learning consultancy with his NannyML co-founders, and the need for monitoring quickly arose, leading to the development of NannyML.

Hakim joins the show to discuss post-deployment data science, the real-world use cases for tools like NannyML, the potentially catastrophic effects of unmonitored models in production, the most important skills for modern data scientists to cultivate, and more.


Hlustaðu og lestu

Stígðu inn í heim af óteljandi sögum

  • Lestu og hlustaðu eins mikið og þú vilt
  • Þúsundir titla
  • Getur sagt upp hvenær sem er
  • Engin skuldbinding
Prófa frítt
is Device Banner Block 894x1036
Cover for #99 Post-Deployment Data Science

Other podcasts you might like ...