Large models on CPUs

Large models on CPUs

0 Umsagnir
0
Episode
223 of 338
Lengd
38Mín.
Tungumál
enska
Gerð
Flokkur
Óskáldað efni

Model sizes are crazy these days with billions and billions of parameters. As Mark Kurtz explains in this episode, this makes inference slow and expensive despite the fact that up to 90%+ of the parameters don’t influence the outputs at all.

Mark helps us understand all of the practicalities and progress that is being made in model optimization and CPU inference, including the increasing opportunities to run LLMs and other Generative AI models on commodity hardware.

Join the discussion

Changelog++ members save 1 minute on this episode because they made the ads disappear. Join today!

Sponsors:

Fastly • – Our bandwidth partner. • Fastly powers fast, secure, and scalable digital experiences. Move beyond your content delivery network to their powerful edge cloud platform. Learn more at fastly.comFly.io • – The home of Changelog.com • — Deploy your apps and databases close to your users. In minutes you can run your Ruby, Go, Node, Deno, Python, or Elixir app (and databases!) all over the world. No ops required. Learn more at fly.io/changelog • and check out the speedrun in their docs • .

Featuring:

• Mark Kurtz – LinkedIn • , X • Daniel Whitenack – Website • , GitHub • , X Show Notes:

Neural MagicSparseMLSparseZooNeural Magic Scales up MLPerf™ Inference v3.0 Performance With Demonstrated Power Efficiency; No GPUs NeededDeploy Optimized Hugging Face Models With DeepSparse and SparseZooSparseGPT: Remove 100 Billion Parameters for Free Something missing or broken? PRs welcome!


Hlustaðu og lestu

Stígðu inn í heim af óteljandi sögum

  • Lestu og hlustaðu eins mikið og þú vilt
  • Þúsundir titla
  • Getur sagt upp hvenær sem er
  • Engin skuldbinding
Prófa frítt
is Device Banner Block 894x1036
Cover for Large models on CPUs

Other podcasts you might like ...