Entra in un mondo di storie
Non-fiction
Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort.
This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle.
By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks.
© 2021 Packt Publishing (Ebook): 9781800565524
Data di uscita
Ebook: 18 febbraio 2021
Più di 400.000 titoli
Kids Mode (accesso sicuro per bambini)
Scarica e ascolta offline
Disdici quando vuoi
Per te che non sei un avido ascoltatore.
1 account
10 ore/mese
Disdici quando vuoi
La scelta migliore per 1 utente. Ascolta e leggi quanto vuoi.
1 account
Ascolto illimitato
Disdici quando vuoi
12 mesi al prezzo di 9. Ascolta e leggi quanto vuoi.
1 account
Ascolto illimitato
Disdici quando vuoi
Storie per tutta la famiglia. Entrate insieme in un mondo di storie.
2 account
Ascolto illimitato
Disdici quando vuoi
Italiano
Italia