Entra in un mondo di storie, prova Storytel gratis per 14 giorni
Non-fiction
In this book, you'll embark on a comprehensive journey through the fundamentals of linear algebra, a critical component for any aspiring machine learning expert. Starting with an introductory overview, the course explains why linear algebra is indispensable for machine learning, setting the stage for deeper exploration. You'll then dive into the concepts of vectors and matrices, understanding their definitions, properties, and practical applications in the field.
As you progress, the course takes a closer look at matrix decomposition, breaking down complex matrices into simpler, more manageable forms. This section emphasizes the importance of decomposition techniques in simplifying computations and enhancing data analysis. The final chapter focuses on principal component analysis, a powerful technique for dimensionality reduction that is widely used in machine learning and data science. By the end of the course, you will have a solid grasp of how PCA can be applied to streamline data and improve model performance.
This course is designed to provide technical professionals with a thorough understanding of linear algebra's role in machine learning. By the end, you'll be well-equipped with the knowledge and skills needed to apply linear algebra in practical machine learning scenarios.
© 2024 Packt Publishing (Ebook): 9781836208945
Data di uscita
Ebook: 24 maggio 2024
Tag
Più di 400.000 titoli
Kids Mode (accesso sicuro per bambini)
Scarica e ascolta offline
Disdici quando vuoi
Le tue prime storie, al prezzo più basso.
6.49 € /mese
Disdici quando vuoi
Ascolto illimitato. Dove vuoi, quando vuoi.
9.99 € /mese
Disdici quando vuoi
Paghi subito 89.99€/anno, l'equivalente di 7.49€/mese, per 1 anno di ascolto illimitato.
89.99 € /anno
Disdici quando vuoi
Risparmia con più account. Ognuno con le proprie storie.
14.99 € /mese
Disdici quando vuoi
Italiano
Italia
