Entra in un mondo di storie
Non-fiction
Causal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.
You’ll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you’ll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you’ll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You’ll further explore the mechanics of how “causes leave traces” and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.
By the end of this book, you will be able to build your own models for causal inference and discovery using statistical and machine learning techniques as well as perform basic project assessment.
© 2023 Packt Publishing (Ebook): 9781804611739
Data di uscita
Ebook: 31 maggio 2023
Più di 400.000 titoli
Kids Mode (accesso sicuro per bambini)
Scarica e ascolta offline
Disdici quando vuoi
Per te che non sei un avido ascoltatore.
1 account
10 ore/mese
Disdici quando vuoi
La scelta migliore per 1 utente. Ascolta e leggi quanto vuoi.
1 account
Ascolto illimitato
Disdici quando vuoi
12 mesi al prezzo di 9. Ascolta e leggi quanto vuoi.
1 account
Ascolto illimitato
Disdici quando vuoi
Storie per tutta la famiglia. Entrate insieme in un mondo di storie.
2 account
Ascolto illimitato
Disdici quando vuoi
Italiano
Italia