Ascolta e leggi

Entra in un mondo di storie

  • Ascolta e leggi quanto vuoi
  • Oltre 400.000 titoli
  • Prova gratis per 14 giorni, poi 9.99€/mese
  • Disdici quando vuoi
  • Ascolta titoli esclusivi e Storytel Original
Prova Gratis
Device Banner Block 894x1036

Deep Learning with R Cookbook: Over 45 unique recipes to delve into neural network techniques using R 3.5.x

Lingua
Inglese
Format
Categoria

Non-fiction

Tackle the complex challenges faced while building end-to-end deep learning models using modern R libraries

Key Features

• Understand the intricacies of R deep learning packages to perform a range of deep learning tasks

• Implement deep learning techniques and algorithms for real-world use cases

• Explore various state-of-the-art techniques for fine-tuning neural network models

Book Description

Deep learning (DL) has evolved in recent years with developments such as generative adversarial networks (GANs), variational autoencoders (VAEs), and deep reinforcement learning. This book will get you up and running with R 3.5.x to help you implement DL techniques.

The book starts with the various DL techniques that you can implement in your apps. A unique set of recipes will help you solve binomial and multinomial classification problems, and perform regression and hyperparameter optimization. To help you gain hands-on experience of concepts, the book features recipes for implementing convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Long short-term memory (LSTMs) networks, as well as sequence-to-sequence models and reinforcement learning. You'll then learn about high-performance computation using GPUs, along with learning about parallel computation capabilities in R. Later, you'll explore libraries, such as MXNet, that are designed for GPU computing and state-of-the-art DL. Finally, you'll discover how to solve different problems in NLP, object detection, and action identification, before understanding how to use pre-trained models in DL apps.

By the end of this book, you'll have comprehensive knowledge of DL and DL packages, and be able to develop effective solutions for different DL problems.

What you will learn

• Work with different datasets for image classification using CNNs

• Apply transfer learning to solve complex computer vision problems

• Use RNNs and their variants such as LSTMs and Gated Recurrent Units (GRUs) for sequence data generation and classification

• Implement autoencoders for DL tasks such as dimensionality reduction, denoising, and image colorization

• Build deep generative models to create photorealistic images using GANs and VAEs

• Use MXNet to accelerate the training of DL models through distributed computing

Who this book is for

This deep learning book is for data scientists, machine learning practitioners, deep learning researchers and AI enthusiasts who want to learn key tasks in deep learning domains using a recipe-based approach. A strong understanding of machine learning and working knowledge of the R programming language is mandatory.

© 2020 Packt Publishing (Ebook): 9781789808278

Data di uscita

Ebook: 21 febbraio 2020

Tag

Potrebbero piacerti

Scegli il tuo piano

  • Più di 400.000 titoli

  • Kids Mode (accesso sicuro per bambini)

  • Scarica e ascolta offline

  • Disdici quando vuoi

Il più popolare

Unlimited

La scelta migliore per 1 utente. Ascolta e leggi quanto vuoi.

9.99 € /mese
14 giorni gratis
  • 1 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova ora

Unlimited Annuale

12 mesi al prezzo di 9. Ascolta e leggi quanto vuoi.

89.99 € /anno
14 giorni gratis
Risparmia il 25%
  • 1 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova ora

Basic

Per te che non sei un avido ascoltatore.

6.49 € /mese
14 giorni gratis
  • 1 account

  • 10 ore/mese

  • Disdici quando vuoi

Prova ora

Unlimited+

Storie per tutta la famiglia. Entrate insieme in un mondo di storie.

14.99 € /mese
7 giorni gratis
  • 2 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova ora