Inizia il 2026 con le storie giuste. Attiva ora 1 mese di prova gratuita sui piani Unlimited.
Non-fiction
"DINO: Self-Supervised Vision Transformers Explained"
"DINO: Self-Supervised Vision Transformers Explained" offers a comprehensive and rigorous exploration of one of the most influential self-supervised learning methods for visual representation—DINO—as applied to Vision Transformers (ViTs). The book opens by charting the evolution of computer vision, tracing the shift from traditional supervised and convolutional paradigms to the rise of transformer-based architectures and self-supervised learning. With a clear-eyed examination of the limitations of supervised methods and the architectural motivations behind modern transformers, readers are equipped with foundational knowledge that frames the necessity and promise of self-supervised ViTs.
Delving into the heart of DINO, the text systematically unpacks the method’s core concepts, including teacher-student architectures, self-distillation mechanics, and multi-crop augmentation strategies. Readers will find in-depth technical discussions on essential components such as multi-head self-attention, positional encoding, projection heads, and key regularization techniques. Practical engineering guidance accompanies theoretical explanations, featuring detailed advice on large-scale pretraining, distributed training, augmentation strategies, parameter tuning, and troubleshooting instability—making this work both accessible and actionable for practitioners and researchers.
Beyond the mechanics of model training, the book thoughtfully addresses the evaluation and deployment of DINO models in real-world and cross-domain scenarios—from medical imaging to satellite and industrial vision. It provides comparative studies with other self-supervised paradigms, best practices for reproducibility and open-source collaboration, and careful consideration of security, privacy, fairness, and ethical deployment. Concluding with a forward-looking view, the book identifies open research challenges and opportunities for DINO, positioning it as an essential reference for anyone seeking to understand or advance the field of self-supervised vision transformers.
© 2025 HiTeX Press (Ebook): 6610000973330
Data di uscita
Ebook: 24 luglio 2025
Tag
Più di 400.000 titoli
Kids Mode (accesso sicuro per bambini)
Scarica e ascolta offline
Disdici quando vuoi
Ascolto illimitato. Dove vuoi, quando vuoi.
9.99 € /mese
Disdici quando vuoi
Paghi subito 89.99€/anno, l'equivalente di 7.49€/mese, per 1 anno di ascolto illimitato.
89.99 € /anno
Disdici quando vuoi
Risparmia con più account. Ognuno con le proprie storie.
14.99 € /mese
Disdici quando vuoi
Le tue prime storie, al prezzo più basso.
6.49 € /mese
Disdici quando vuoi
Italiano
Italia
