Non-fiction
Hidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone.
Once you’ve covered the basic concepts of Markov chains, you’ll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you’ll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you’ll explore the Bayesian approach of inference and learn how to apply it in HMMs.
In further chapters, you’ll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You’ll also learn to apply HMM to image processing using 2D-HMM to segment images. Finally, you’ll understand how to apply HMM for reinforcement learning (RL) with the help of Q-Learning, and use this technique for single-stock and multi-stock algorithmic trading.
By the end of this book, you will have grasped how to build your own Markov and hidden Markov models on complex datasets in order to apply them to projects.
© 2018 Packt Publishing (Ebook): 9781788629331
Data di uscita
Ebook: 27 settembre 2018
Più di 400.000 titoli
Kids Mode (accesso sicuro per bambini)
Scarica e ascolta offline
Disdici quando vuoi
Ascolto illimitato. Dove vuoi, quando vuoi.
9.99 € /mese
Disdici quando vuoi
Paghi subito 89.99€/anno, l'equivalente di 7.49€/mese, per 1 anno di ascolto illimitato.
89.99 € /anno
Disdici quando vuoi
Risparmia con più account. Ognuno con le proprie storie.
14.99 € /mese
Disdici quando vuoi
Le tue prime storie, al prezzo più basso.
6.49 € /mese
Disdici quando vuoi