Ascolta e leggi

Entra in un mondo di storie

  • Ascolta e leggi quanto vuoi
  • Oltre 400.000 titoli
  • Prova gratis per 14 giorni, poi 9.99€/mese
  • Disdici quando vuoi
  • Ascolta titoli esclusivi e Storytel Original
Prova gratis
Device Banner Block 894x1036
Cover for Interpretability and Explainability in AI Using Python

Interpretability and Explainability in AI Using Python

Corsi di lingua
Inglese
Formato
Categoria

Non-fiction

Demystify AI Decisions and Master Interpretability and Explainability Today

Book Description

Interpretability in AI/ML refers to the ability to understand and explain how a model arrives at its predictions. It ensures that humans can follow the model's reasoning, making it easier to debug, validate, and trust.

Interpretability and Explainability in AI Using Python takes you on a structured journey through interpretability and explainability techniques for both white-box and black-box models.

You’ll start with foundational concepts in interpretable machine learning, exploring different model types and their transparency levels. As you progress, you’ll dive into post-hoc methods, feature effect analysis, anchors, and counterfactuals—powerful tools to decode complex models. The book also covers explainability in deep learning, including Neural Networks, Transformers, and Large Language Models (LLMs), equipping you with strategies to uncover decision-making patterns in AI systems.

Through hands-on Python examples, you’ll learn how to apply these techniques in real-world scenarios. By the end, you’ll be well-versed in choosing the right interpretability methods, implementing them efficiently, and ensuring AI models align with ethical and regulatory standards—giving you a competitive edge in the evolving AI landscape.

Table of Contents

1. Interpreting Interpretable Machine Learning 2. Model Types and Interpretability Techniques 3. Interpretability Taxonomy and Techniques 4. Feature Effects Analysis with Plots 5. Post-Hoc Methods 6. Anchors and Counterfactuals 7. Interpretability in Neural Networks 8. Explainable Neural Networks 9. Explainability in Transformers and Large Language Models 10. Explainability and Responsible AI

Index

© 2025 Orange Education Pvt Ltd (Ebook): 9789348107749

Data di uscita

Ebook: 15 aprile 2025

Potrebbero piacerti

Scegli il tuo piano

  • Più di 400.000 titoli

  • Kids Mode (accesso sicuro per bambini)

  • Scarica e ascolta offline

  • Disdici quando vuoi

Basic

Le tue prime storie, al prezzo più basso.

6.49 € /mese
  • 1 account

  • 10 ore/mese

  • Disdici quando vuoi

Prova gratis
Il più popolare

Unlimited

Ascolto illimitato. Dove vuoi, quando vuoi.

9.99 € /mese
  • 1 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova gratis

Unlimited Annuale

12 mesi al prezzo di 9. Ascolto illimitato a un prezzo imbattibile.

89.99 € /anno
Risparmia il 25%
  • 1 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova gratis

Unlimited Family

Risparmia con più account. Ognuno con le proprie storie.

14.99 € /mese
  • 2 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova gratis