Ascolta e leggi

Entra in un mondo di storie

  • Ascolta e leggi quanto vuoi
  • Oltre 400.000 titoli
  • Prova gratis per 14 giorni, poi 9.99€/mese
  • Disdici quando vuoi
  • Ascolta titoli esclusivi e Storytel Original
Prova Gratis
Device Banner Block 894x1036

Machine Learning System Design for Beginners: Building Machine Learning Systems. A Beginner's Guide to Design and Implementation

Durata
3h 6min
Lingua
Inglese
Format
Categoria

Non-fiction

Designing and building machine learning (ML) systems can seem daunting for beginners, but understanding the foundational steps and principles can simplify the process. At its core, ML system design involves a series of well-defined steps that guide the transformation of raw data into valuable insights through predictive models. Here’s a beginner’s guide to understanding and implementing these steps effectively.

The first step in designing an ML system is problem definition. Clearly defining the problem you aim to solve is crucial. This involves understanding the business context, identifying the goals, and determining the type of problem—whether it is classification, regression, clustering, or another ML task. A well-defined problem ensures that the subsequent steps are aligned with the desired outcomes.

Once the problem is defined, the next step is data collection and preprocessing. Data is the backbone of any ML system, and its quality significantly impacts the performance of the models. Collect data from various sources and ensure it is relevant to the problem. Data preprocessing involves cleaning the data to handle missing values, removing duplicates, and normalizing the data. It also includes feature engineering, which involves selecting, modifying, or creating new features that enhance the predictive power of the model.

Finally, the deployment and monitoring phase ensures that the ML model is operational and continues to perform well over time. Deploy the model to a production environment where it can make real-time predictions or be used in batch processing. Implement monitoring systems to track the model’s performance and detect any drift in data distribution that might require retraining the model. Regularly update the model with new data to maintain its accuracy and relevance.

© 2024 James Ferry (Audiolibro): 9798882443640

Data di uscita

Audiolibro: 9 luglio 2024

Scegli il tuo piano

  • Più di 400.000 titoli

  • Kids Mode (accesso sicuro per bambini)

  • Scarica e ascolta offline

  • Disdici quando vuoi

Il più popolare

Unlimited

La scelta migliore per 1 utente. Ascolta e leggi quanto vuoi.

9.99 € /mese
14 giorni gratis
  • 1 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova ora

Unlimited Annuale

12 mesi al prezzo di 9. Ascolta e leggi quanto vuoi.

89.99 € /anno
14 giorni gratis
Risparmia il 25%
  • 1 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova ora

Basic

Per te che non sei un avido ascoltatore.

6.49 € /mese
14 giorni gratis
  • 1 account

  • 10 ore/mese

  • Disdici quando vuoi

Prova ora

Unlimited+

Storie per tutta la famiglia. Entrate insieme in un mondo di storie.

14.99 € /mese
7 giorni gratis
  • 2 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova ora