Ascolta e leggi

Entra in un mondo di storie

  • Ascolta e leggi quanto vuoi
  • Oltre 400.000 titoli
  • Prova gratis per 14 giorni, poi 9.99€/mese
  • Disdici quando vuoi
  • Ascolta titoli esclusivi e Storytel Original
Prova Gratis
Device Banner Block 894x1036

PyTorch 1.x Reinforcement Learning Cookbook : Over 60 recipes to design, develop and deploy self-learning AI models using Python: Over 60 recipes to design, develop, and deploy self-learning AI models using Python

Lingua
Inglese
Format
Categoria

Non-fiction

Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes

Key Features

• Use PyTorch 1.x to design and build self-learning artificial intelligence (AI) models

• Implement RL algorithms to solve control and optimization challenges faced by data scientists today

• Apply modern RL libraries to simulate a controlled environment for your projects

Book Description

Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use.

With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game.

By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems.

What you will learn

• Use Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problems

• Develop a multi-armed bandit algorithm to optimize display advertising

• Scale up learning and control processes using Deep Q-Networks

• Simulate Markov Decision Processes, OpenAI Gym environments, and other common control problems

• Select and build RL models, evaluate their performance, and optimize and deploy them

• Use policy gradient methods to solve continuous RL problems

Who this book is for

Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.

© 2019 Packt Publishing (Ebook): 9781838553234

Data di uscita

Ebook: 31 ottobre 2019

Potrebbero piacerti

Scegli il tuo piano

  • Più di 400.000 titoli

  • Kids Mode (accesso sicuro per bambini)

  • Scarica e ascolta offline

  • Disdici quando vuoi

Il più popolare

Unlimited

La scelta migliore per 1 utente. Ascolta e leggi quanto vuoi.

9.99 € /mese
14 giorni gratis
  • 1 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova ora

Unlimited Annuale

12 mesi al prezzo di 9. Ascolta e leggi quanto vuoi.

89.99 € /anno
14 giorni gratis
Risparmia il 25%
  • 1 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova ora

Basic

Per te che non sei un avido ascoltatore.

6.49 € /mese
14 giorni gratis
  • 1 account

  • 10 ore/mese

  • Disdici quando vuoi

Prova ora

Unlimited+

Storie per tutta la famiglia. Entrate insieme in un mondo di storie.

14.99 € /mese
7 giorni gratis
  • 2 account

  • Ascolto illimitato

  • Disdici quando vuoi

Prova ora