Entra in un mondo di storie
46 of 5
Non-fiction
This book introduces a new class of non-associative algebras related to certain exceptional algebraic groups and their associated buildings. Richard Weiss develops a theory of these "quadrangular algebras" that opens the first purely algebraic approach to the exceptional Moufang quadrangles. These quadrangles include both those that arise as the spherical buildings associated to groups of type E6, E7, and E8 as well as the exotic quadrangles "of type F4" discovered earlier by Weiss. Based on their relationship to exceptional algebraic groups, quadrangular algebras belong in a series together with alternative and Jordan division algebras. Formally, the notion of a quadrangular algebra is derived from the notion of a pseudo-quadratic space (introduced by Jacques Tits in the study of classical groups) over a quaternion division ring. This book contains the complete classification of quadrangular algebras starting from first principles. It also shows how this classification can be made to yield the classification of exceptional Moufang quadrangles as a consequence. The book closes with a chapter on isotopes and the structure group of a quadrangular algebra.
Quadrangular Algebras is intended for graduate students of mathematics as well as specialists in buildings, exceptional algebraic groups, and related algebraic structures including Jordan algebras and the algebraic theory of quadratic forms.
© 2009 Princeton University Press (Ebook): 9781400826940
Data di uscita
Ebook: 9 febbraio 2009
Più di 400.000 titoli
Kids Mode (accesso sicuro per bambini)
Scarica e ascolta offline
Disdici quando vuoi
Per te che non sei un avido ascoltatore.
1 account
10 ore/mese
Disdici quando vuoi
La scelta migliore per 1 utente. Ascolta e leggi quanto vuoi.
1 account
Ascolto illimitato
Disdici quando vuoi
12 mesi al prezzo di 9. Ascolta e leggi quanto vuoi.
1 account
Ascolto illimitato
Disdici quando vuoi
Storie per tutta la famiglia. Entrate insieme in un mondo di storie.
2 account
Ascolto illimitato
Disdici quando vuoi
Italiano
Italia