Entra in un mondo di storie
193 of 21
Non-fiction
The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches, one by Ahmed Abbes and Michel Gros, the other by Takeshi Tsuji. The authors mainly focus on generalized representations of the fundamental group that are p-adically close to the trivial representation.
The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The authors show the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the volume contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored. The authors present a new approach based on a generalization of P. Deligne's covanishing topos.
© 2016 Princeton University Press (Ebook): 9781400881239
Data di uscita
Ebook: 9 febbraio 2016
Tag
Più di 400.000 titoli
Kids Mode (accesso sicuro per bambini)
Scarica e ascolta offline
Disdici quando vuoi
Per te che non sei un avido ascoltatore.
1 account
10 ore/mese
Disdici quando vuoi
La scelta migliore per 1 utente. Ascolta e leggi quanto vuoi.
1 account
Ascolto illimitato
Disdici quando vuoi
12 mesi al prezzo di 9. Ascolta e leggi quanto vuoi.
1 account
Ascolto illimitato
Disdici quando vuoi
Storie per tutta la famiglia. Entrate insieme in un mondo di storie.
2 account
Ascolto illimitato
Disdici quando vuoi
Italiano
Italia