Ascolta gratis per 30 giorni

Inizia il 2026 con le storie giuste. Attiva ora 1 mese di prova gratuita sui piani Unlimited.

  • 0,00€ per 30 giorni (invece di 9,99€)
  • Oltre 400.000 titoli
  • Disdici quando vuoi
  • Ascolta titoli esclusivi e Storytel Original
Prova gratis per 30 giorni
Device Banner Block 894x1036
Cover for TVM: Compiler Infrastructure for Deep Learning Optimization: The Complete Guide for Developers and Engineers

TVM: Compiler Infrastructure for Deep Learning Optimization: The Complete Guide for Developers and Engineers

Lingua
Inglese
Formato
Categoria

Non-fiction

"TVM: Compiler Infrastructure for Deep Learning Optimization"

"TVM: Compiler Infrastructure for Deep Learning Optimization" delivers a comprehensive exploration of the principles, architecture, and cutting-edge techniques underlying TVM—a pioneering open-source compiler stack designed to optimize and deploy deep learning models across a diverse range of hardware backends. Beginning with an incisive overview of why traditional compilers fall short for deep learning workloads, the book guides readers through key foundations such as computational graph abstractions, intermediate representations, and performance-driven compilation strategies that empower model portability and efficiency.

The text meticulously details TVM’s layered system architecture, covering components such as the Relay high-level IR, the tensor expression language and scheduling primitives, as well as framework integration and extensibility for custom operators and hardware targets. Advanced chapters delve into specialized topics including graph transformations, backend-specific code generation for CPUs, GPUs, NPUs, and FPGAs, and fine-grained scheduling optimizations enabled by AutoTVM and meta-scheduling. Practical insights into memory management, automatic differentiation, and debugging tools illuminate the complexities of optimizing neural networks for both cloud-scale and edge deployments.

With dedicated sections addressing deployment pipelines, security, interoperability with serving and cloud-native infrastructure, and best practices for extending the ecosystem, this book serves as both an in-depth reference and a practical guide for engineers, researchers, and practitioners. The concluding chapters look toward the frontier of the field—discussing formal verification, privacy-preserving compilation, sparse workload optimization, and anticipated hardware trends—making this an indispensable resource for anyone involved in deep learning systems, compiler design, or hardware-software co-design.

© 2025 HiTeX Press (Ebook): 6610001024598

Data di uscita

Ebook: 20 agosto 2025

Tag

    Scegli il piano che fa per te

    • Più di 400.000 titoli

    • Kids Mode (accesso sicuro per bambini)

    • Scarica e ascolta offline

    • Disdici quando vuoi

    Il più popolare

    Unlimited

    Ascolto illimitato. Dove vuoi, quando vuoi.

    9.99 € /mese

    14 giorni gratis
    • Disdici quando vuoi

    Prova gratis per 30 giorni

    Unlimited Annuale

    Paghi subito 89.99€/anno, l'equivalente di 7.49€/mese, per 1 anno di ascolto illimitato.

    89.99 € /anno

    14 giorni gratis
    12 mesi al prezzo di 9
    • Disdici quando vuoi

    Prova gratis per 30 giorni

    Unlimited Family

    Risparmia con più account. Ognuno con le proprie storie.

    14.99 € /mese

    7 giorni gratis
    • Disdici quando vuoi

    Prova gratis per 30 giorni

    Basic

    Le tue prime storie, al prezzo più basso.

    6.49 € /mese

    14 giorni gratis
    • Disdici quando vuoi

    Prova gratis per 7 giorni