격이 다른 오디오북 생활을 경험해보세요!
논픽션
"Keras Deep Learning Essentials"
"Keras Deep Learning Essentials" is an authoritative guide that equips practitioners, researchers, and aspiring deep learning engineers with the essential knowledge and hands-on techniques for building, optimizing, and deploying state-of-the-art neural networks using the Keras framework. Beginning with the fundamental mathematical principles behind deep learning and a survey of modern neural architectures, the book offers clear explanations of Keras’s design philosophy, its seamless integration with TensorFlow, and the complete pipeline from initial prototyping to scalable production inference. With a strong emphasis on practical environment setup, the book ensures readers are well-prepared to harness advanced hardware acceleration and library dependencies for robust model development.
Each chapter delves into a core aspect of the Keras workflow, from model construction patterns utilizing the Sequential and Functional APIs to sophisticated techniques such as subclassing, transfer learning, and custom layer engineering. Readers master the intricacies of efficient data pipelines, advanced feature engineering, and data augmentation strategies, supported by real-world guidance on handling class imbalance, online data validation, and complex input modalities. Model training and optimization at scale are addressed through modern loss and metric engineering, distributed and multi-GPU strategies, and advanced debugging and profiling to ensure performance and reliability for the most demanding applications.
Beyond model development, "Keras Deep Learning Essentials" provides a comprehensive exploration of evaluation, explainability, and productionization. The book details best practices for model serialization, serving, mobile and edge deployment, and integration with MLOps pipelines, as well as crucial topics such as compliance, security, and sustainable AI. Advanced chapters discuss Keras’s role in cutting-edge research areas, including reinforcement learning, graph neural networks, and federated learning, positioning readers to innovate within both research and industry environments. This essential resource concludes with timely insights into emerging trends, reproducibility, and the evolving Keras ecosystem, making it indispensable for anyone seeking to advance in the deep learning domain.
© 2025 HiTeX Press (전자책): 6610000874613
출시일
전자책: 2025년 6월 14일
태그
국내 유일 해리포터 시리즈 오디오북
5만권이상의 영어/한국어 오디오북
키즈 모드(어린이 안전 환경)
월정액 무제한 청취
언제든 취소 및 해지 가능
오프라인 액세스를 위한 도서 다운로드
친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해
2-3 계정
무제한 청취
2-3 계정
무제한 청취
언제든 해지하실 수 있어요
2 개 계정
17900 원 /월한국어
대한민국