Luisterboeken voor iedereen

Meer dan 1 miljoen luisterboeken en ebooks in één app. Ontdek Storytel nu.

  • Switch makkelijk tussen luisteren en lezen
  • Elke week honderden nieuwe verhalen
  • Voor ieder een passend abonnement
  • Opzeggen wanneer je maar wilt
Probeer 14 dagen gratis
NL - Details page - Device banner - 894x1036

An Architecture for Fast and General Data Processing on Large Clusters

Serie

1 of 64

Taal
Engels
Format
Categorie

Non-fictie

The past few years have seen a major change in computing systems, as growing data volumes and stalling processor speeds require more and more applications to scale out to clusters. Today, a myriad data sources, from the Internet to business operations to scientific instruments, produce large and valuable data streams. However, the processing capabilities of single machines have not kept up with the size of data. As a result, organizations increasingly need to scale out their computations over clusters.

At the same time, the speed and sophistication required of data processing have grown. In addition to simple queries, complex algorithms like machine learning and graph analysis are becoming common. And in addition to batch processing, streaming analysis of real-time data is required to let organizations take timely action. Future computing platforms will need to not only scale out traditional workloads, but support these new applications too.

This book, a revised version of the 2014 ACM Dissertation Award winning dissertation, proposes an architecture for cluster computing systems that can tackle emerging data processing workloads at scale. Whereas early cluster computing systems, like MapReduce, handled batch processing, our architecture also enables streaming and interactive queries, while keeping MapReduce's scalability and fault tolerance. And whereas most deployed systems only support simple one-pass computations (e.g., SQL queries), ours also extends to the multi-pass algorithms required for complex analytics like machine learning. Finally, unlike the specialized systems proposed for some of these workloads, our architecture allows these computations to be combined, enabling rich new applications that intermix, for example, streaming and batch processing.

We achieve these results through a simple extension to MapReduce that adds primitives for data sharing, called Resilient Distributed Datasets (RDDs). We show that this is enough to capture a wide range of workloads. We implement RDDs in the open source Spark system, which we evaluate using synthetic and real workloads. Spark matches or exceeds the performance of specialized systems in many domains, while offering stronger fault tolerance properties and allowing these workloads to be combined. Finally, we examine the generality of RDDs from both a theoretical modeling perspective and a systems perspective.

This version of the dissertation makes corrections throughout the text and adds a new section on the evolution of Apache Spark in industry since 2014. In addition, editing, formatting, and links for the references have been added.

© 2016 ACM Books (Ebook): 9781970001587

Publicatiedatum

Ebook: 1 mei 2016

Anderen genoten ook van...

Maak je keuze:

  • Voor ieder een passend abonnement

  • Kies het aantal uur en accounts dat bij jou past

  • Download verhalen voor offline toegang

  • Kids Mode - een veilige omgeving voor kinderen

Meest gekozen

Unlimited

Voor wie onbeperkt wil luisteren en lezen.

€13.99 /30 dagen
14 dagen gratis
  • 1 account

  • Onbeperkte toegang

  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Probeer 14 dagen gratis

Premium

Voor wie zo nu en dan wil luisteren en lezen.

€9.99 /30 dagen
14 dagen gratis
  • 1 account

  • 30 uur/30 dagen

  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Probeer 14 dagen gratis

Flex

Voor wie Storytel wil proberen.

€7.99 /30 dagen
7 dagen gratis
  • 1 account

  • 10 uur/30 dagen

  • Spaar ongebruikte uren op tot 50 uur

  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

Probeer 7 dagen gratis

Family

Voor wie verhalen met familie en vrienden wil delen.

Vanaf €18.99 /30 dagen
14 dagen gratis
  • 2-3 accounts

  • Onbeperkte toegang

  • Meer dan 1 miljoen luisterboeken en ebooks

  • Altijd opzegbaar

2 accounts

€18.99 /30 dagen
Probeer 14 dagen gratis