Meer dan 1 miljoen luisterboeken en ebooks in één app. Ontdek Storytel nu.
194 of 21
Non-fictie
This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface.
Isroil Ikromov and Detlef Müller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Müller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger.
Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
© 2016 Princeton University Press (Ebook): 9781400881246
Publicatiedatum
Ebook: 24 mei 2016
Tags
Voor ieder een passend abonnement
Kies het aantal uur en accounts dat bij jou past
Download verhalen voor offline toegang
Kids Mode - een veilige omgeving voor kinderen
Voor wie onbeperkt wil luisteren en lezen.
1 account
Onbeperkte toegang
Meer dan 1 miljoen luisterboeken en ebooks
Altijd opzegbaar
Voor wie zo nu en dan wil luisteren en lezen.
1 account
30 uur/30 dagen
Meer dan 1 miljoen luisterboeken en ebooks
Altijd opzegbaar
Voor wie verhalen met familie en vrienden wil delen.
2-3 accounts
Onbeperkte toegang
Meer dan 1 miljoen luisterboeken en ebooks
Altijd opzegbaar
2 accounts
€18.99 /30 dagenNederlands
Nederland