Znajdź swoją nową ulubioną historię - teraz za jedyne 19,95 zł miesięcznie przez pierwsze 4 miesiące
Literatura Faktu
Understand your data and user preferences to make intelligent, accurate, and profitable decisions
About This Book
• A step-by-step guide to building recommendation engines that are personalized, scalable, and real time
• Get to grips with the best tool available on the market to create recommender systems
• This hands-on guide shows you how to implement different tools for recommendation engines, and when to use which
Who This Book Is For
This book caters to beginners and experienced data scientists looking to understand and build complex predictive decision-making systems, recommendation engines using R, Python, Spark, Neo4j, and Hadoop.
What You Will Learn • Build your first recommendation engine
• Discover the tools needed to build recommendation engines
• Dive into the various techniques of recommender systems such as collaborative, content-based, and cross-recommendations
• Create efficient decision-making systems that will ease your work
• Familiarize yourself with machine learning algorithms in different frameworks
• Master different versions of recommendation engines from practical code examples
• Explore various recommender systems and implement them in popular techniques with R, Python, Spark, and others
In Detail
A recommendation engine (sometimes referred to as a recommender system) is a tool that lets algorithm developers predict what a user may or may not like among a list of given items. Recommender systems have become extremely common in recent years, and are applied in a variety of applications. The most popular ones are movies, music, news, books, research articles, search queries, social tags, and products in general.
The book starts with an introduction to recommendation systems and its applications. You will then start building recommendation engines straight away from the very basics. As you move along, you will learn to build recommender systems with popular frameworks such as R, Python, Spark, Neo4j, and Hadoop. You will get an insight into the pros and cons of each recommendation engine and when to use which recommendation to ensure each pick is the one that suits you the best.
During the course of the book, you will create simple recommendation engine, real-time recommendation engine, scalable recommendation engine, and more. You will familiarize yourselves with various techniques of recommender systems such as collaborative, content-based, and cross-recommendations before getting to know the best practices of building a recommender system towards the end of the book!
Style and approach
This book follows a step-by-step practical approach where users will learn to build recommendation engines with increasing complexity in every chapter.
© 2016 Packt Publishing (E-book): 9781785883538
Wydanie
E-book: 29 grudnia 2016
Ponad 500 000 tytułów w cenie jednego abonamentu
Słuchaj i czytaj w trybie offline
Ekskluzywne produkcje audio Storytel Original
Tryb dziecięcy Kids Mode
Anuluj kiedy chcesz
Dla tych, którzy chcą słuchać i czytać bez limitów.
1 konto
Nielimitowany Dostęp
1 konto
Słuchanie bez limitów
Anuluj w dowolnym momencie
Dla tych, którzy chcą słuchać i czytać bez limitów.
1 konto
Nielimitowany Dostęp
1 konto
Słuchanie bez limitów
Anuluj w dowolnym momencie
Dla tych, którzy słuchają i czytają od czasu do czasu.
1 konto
10 godzin/miesięcznie
1 konto
10 godzin / miesiąc
Anuluj w dowolnym momencie
Dla tych, którzy chcą dzielić się historiami ze znajomymi i rodziną.
2-3 kont
Nielimitowany Dostęp
2–3 konta
Słuchanie bez limitów
Anuluj w dowolnym momencie
2 konta
59.90 zł /30 dniPolski
Polska