Romans na spacerze? Kryminał w drodze do pracy? Wciągający thriller, gdy gotujesz? Z ponad 500 tys. tytułów do wyboru, nigdy nie zabraknie Ci najlepszych historii. Zacznij słuchać już dziś - ale uważaj, te emocje uzależniają!
Literatura Faktu
An ideal textbook for complete beginners—teaches from scratch R, statistics, and the fundamentals of quantitative social science
Data Analysis for Social Science provides a friendly introduction to the statistical concepts and programming skills needed to conduct and evaluate social scientific studies. Assuming no prior knowledge of statistics and coding and only minimal knowledge of math, the book teaches the fundamentals of survey research, predictive models, and causal inference while analyzing data from published studies with the statistical program R. It teaches not only how to perform the data analyses but also how to interpret the results and identify the analyses’ strengths and limitations.
• Progresses by teaching how to solve one kind of problem after another, bringing in methods as needed. It teaches, in this order, how to (1) estimate causal effects with randomized experiments, (2) visualize and summarize data, (3) infer population characteristics, (4) predict outcomes, (5) estimate causal effects with observational data, and (6) generalize from sample to population. • Flips the script of traditional statistics textbooks. It starts by estimating causal effects with randomized experiments and postpones any discussion of probability and statistical inference until the final chapters. This unconventional order engages students by demonstrating from the very beginning how data analysis can be used to answer interesting questions, while reserving more abstract, complex concepts for later chapters. • Provides a step-by-step guide to analyzing real-world data using the powerful, open-source statistical program R, which is free for everyone to use. The datasets are provided on the book’s website so that readers can learn how to analyze data by following along with the exercises in the book on their own computer. • Assumes no prior knowledge of statistics or coding. • Specifically designed to accommodate students with a variety of math backgrounds. It includes supplemental materials for students with minimal knowledge of math and clearly identifies sections with more advanced material so that readers can skip them if they so choose. • Provides cheatsheets of statistical concepts and R code. • Comes with instructor materials (upon request), including sample syllabi, lecture slides, and additional replication-style exercises with solutions and with the real-world datasets analyzed.
Looking for a more advanced introduction? Consider Quantitative Social Science by Kosuke Imai. In addition to covering the material in Data Analysis for Social Science, it teaches diffs-in-diffs models, heterogeneous effects, text analysis, and regression discontinuity designs, among other things.
© 2024 Princeton University Press (E-book): 9780691270876
Wydanie
E-book: 10 września 2024
Ponad 500 000 tytułów w cenie jednego abonamentu
Wypróbuj przez 7 dni
Słuchaj i czytaj w trybie offline
Ekskluzywne produkcje audio Storytel Original
Tryb dziecięcy Kids Mode
Anuluj kiedy chcesz
Dla tych, którzy chcą słuchać i czytać bez limitów.
39.90 zł /30 dni
1 konto
Słuchanie bez limitów
Anuluj w dowolnym momencie
Dla tych, którzy chcą słuchać i czytać bez limitów.
39.90 zł /30 dni
1 konto
Słuchanie bez limitów
Anuluj w dowolnym momencie
Dla tych, którzy słuchają i czytają od czasu do czasu.
22.90 zł /30 dni
1 konto
10 godzin / miesiąc
Anuluj w dowolnym momencie
Dla tych, którzy chcą dzielić się historiami ze znajomymi i rodziną.
Od 59.90 zł /30 dni
2–3 konta
Słuchanie bez limitów
Anuluj w dowolnym momencie
59.90 zł /30 dni
Polski
Polska
