To Twój czas na niezwykłe historie

Zanurz się w świecie setek tysięcy audiobooków i e-booków - zacznij słuchać już dziś!

  • Czytaj i słuchaj jak chcesz i ile chcesz
  • Ponad 500 000 tytułów
  • Tytuły dostępne wyłącznie w Storytel oraz Storytel Originals
  • 7-dniowy bezpłatny okres próbny
  • Łatwa rezygnacja w dowolnym momencie
Wypróbuj 7 dni za darmo
PL - Details page - Device banner - 894x1036

PySpark Cookbook: Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

Język
angielski
Format
Kategoria

Literatura Faktu

Combine the power of Apache Spark and Python to build effective big data applications

Key FeaturesPerform effective data processing, machine learning, and analytics using PySparkOvercome challenges in developing and deploying Spark solutions using PythonExplore recipes for efficiently combining Python and Apache Spark to process dataBook Description

Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem.

You’ll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You’ll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you’ll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You’ll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command.

By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications.

What you will learnConfigure a local instance of PySpark in a virtual environment Install and configure Jupyter in local and multi-node environmentsCreate DataFrames from JSON and a dictionary using pyspark.sqlExplore regression and clustering models available in the ML moduleUse DataFrames to transform data used for modelingConnect to PubNub and perform aggregations on streamsWho this book is for

The PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.

Denny Lee is a technology evangelist at Databricks. He is a hands-on data science engineer with 15+ years of experience. His key focuses are solving complex large-scale data problems—providing not only architectural direction but hands-on implementation of such systems. He has extensive experience of building greenfield teams as well as being a turnaround/change catalyst. Prior to joining Databricks, he was a senior director of data science engineering at Concur and was part of the incubation team that built Hadoop on Windows and Azure (currently known as HDInsight). Tomasz Drabas is a data scientist specializing in data mining, deep learning, machine learning, choice modeling, natural language processing, and operations research. He is the author of Learning PySpark and Practical Data Analysis Cookbook. He has a PhD from University of New South Wales, School of Aviation. His research areas are machine learning and choice modeling for airline revenue management.

© 2018 Packt Publishing (eBook): 9781788834254

Data wydania

eBook: 29 czerwca 2018

Inni polubili także ...

Wybierz swoją subskrypcję:

  • Ponad 500 000 tytułów w cenie jednego abonamentu

  • Słuchaj i czytaj w trybie offline

  • Ekskluzywne produkcje audio Storytel Original

  • Tryb dziecięcy Kids Mode

  • Anuluj kiedy chcesz

Najpopularniejsze

Unlimited

Dla tych, którzy chcą słuchać i czytać bez limitów.

39.90 zł /miesiąc
7 dni za darmo
  • 1 konto

  • Nielimitowany Dostęp

  • 1 konto

  • Słuchanie bez limitów

  • Anuluj w dowolnym momencie

Rozpocznij subskrypcję

Unlimited na rok

Dla tych, którzy chcą słuchać i czytać bez limitów.

39.90 zł /miesiąc
  • 1 konto

  • Nielimitowany Dostęp

  • 1 konto

  • Słuchanie bez limitów

  • Anuluj w dowolnym momencie

Rozpocznij subskrypcję

Basic

Dla tych, którzy słuchają i czytają od czasu do czasu.

22.90 zł /miesiąc
7 dni za darmo
  • 1 konto

  • 10 godzin/miesięcznie

  • 1 konto

  • 10 godzin / miesiąc

  • Anuluj w dowolnym momencie

Wypróbuj

Family

Dla tych, którzy chcą dzielić się historiami ze znajomymi i rodziną.

Od 59.90 zł/miesiąc
7 dni za darmo
  • 2-3 kont

  • Nielimitowany Dostęp

  • 2–3 konta

  • Słuchanie bez limitów

  • Anuluj w dowolnym momencie

2 konta

59.90 zł /miesiąc
Wypróbuj