Słuchaj 50% taniej przez 4 miesiące

Świat setek tysięcy audiobooków i e-booków czeka na Ciebie - teraz za jedyne 19,95 zł miesięcznie przez pierwsze 4 miesiące.

  • Czytaj i słuchaj jak chcesz i ile chcesz
  • Ponad 500 000 tytułów
  • Tytuły dostępne wyłącznie w Storytel oraz Storytel Originals
  • 7-dniowy bezpłatny okres próbny
  • Łatwa rezygnacja w dowolnym momencie
Skorzystaj ze zniżki
PL - Details page - Device banner - 894x1036

Hands-On Machine Learning on Google Cloud Platform: Implementing smart and efficient analytics using Cloud ML Engine

Język
angielski
Format
Kategoria

Literatura Faktu

Unleash Google's Cloud Platform to build, train and optimize machine learning models

Key Features • Get well versed in GCP pre-existing services to build your own smart models

• A comprehensive guide covering aspects from data processing, analyzing to building and training ML models

• A practical approach to produce your trained ML models and port them to your mobile for easy access

Book Description

Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions.

This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications.

By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems.

What you will learn • Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile

• Create, train and optimize deep learning models for various data science problems on big data

• Learn how to leverage BigQuery to explore big datasets

• Use Google’s pre-trained TensorFlow models for NLP, image, video and much more

• Create models and architectures for Time series, Reinforcement Learning, and generative models

• Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications

Who this book is for

This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy

Giuseppe Ciaburro holds a PhD in environmental technical physics and two master's degrees. His research is on machine learning applications in the study of urban sound environments. He works at Built Environment Control Laboratory, Università degli Studi della Campania Luigi Vanvitelli (Italy). He has over 15 years' experience in programming Python, R, and MATLAB, first in the field of combustion, and then in acoustics and noise control. He has several publications to his credit. V Kishore Ayyadevara has over 9 years' experience of using analytics to solve business problems and setting up analytical work streams through his work at American Express, Amazon, and, more recently, a retail analytics consulting startup. He has an MBA from IIM Calcutta and is also an electronics and communications engineer. He has worked in credit risk analytics, supply chain analytics, and consulting for multiple FMCG companies to identify ways to improve their profitability. Alexis Perrier is a data science consultant with experience in signal processing and stochastic algorithms. He holds a master's in mathematics from Université Pierre et Marie Curie Paris VI and a PhD in signal processing from Télécom ParisTech. He is actively involved in the DC data science community. He is also an avid book lover and proud owner of a real chalk blackboard, where he regularly shares his fascination of mathematical equations with his kids.

© 2018 Packt Publishing (eBook): 9781788398879

Data wydania

eBook: 30 kwietnia 2018

Inni polubili także ...

  1. All-in On AI: How Smart Companies Win Big with Artificial Intelligence Tom Davenport
  2. AI for beginners: Begin your AI developer journey in 2024 Et Tu Code
  3. Competing in the Age of AI: Strategy and Leadership When Algorithms and Networks Run the World Karim R. Lakhani
  4. Python: - The Bible- 3 Manuscripts in 1 book: Python Programming for Beginners - Python Programming for Intermediates - Python Programming for Advanced Maurice J. Thompson
  5. Artificial Intelligence with Python for Beginners: Comprehensive Guide to Building AI Applications James Ferry
  6. Deep Learning John D. Kelleher
  7. Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs Mike Taylor
  8. Advanced Analytics with Power BI and Excel Dejan Sarka
  9. AI and Machine Learning for Coders: A Programmer's Guide to Artificial Intelligence Laurence Moroney
  10. Machine Learning, Deep Learning & Generative AI: Understanding the Complete Modern AI in 2024: ML, DL & Gen AI Et Tu Code
  11. AI and Machine Learning for On-Device Development: A Programmer's Guide, 1st Edition Laurence Moroney
  12. The AI-Savvy Leader: Nine Ways to Take Back Control and Make AI Work David De Cremer
  13. Machines of Loving Grace: The Quest for Common Ground Between Humans and Robots John Markoff
  14. The Deep Learning Revolution Terrence J. Sejnowski
  15. 2084 and the AI Revolution, Updated and Expanded Edition: How Artificial Intelligence Informs Our Future John C. Lennox
  16. The AI Con: How to Fight Big Tech’s Hype and Create the Future We Want Emily M. Bender
  17. Quantum Computing: The Transformative Technology of the Qubit Revolution Brian Clegg
  18. The Year in Tech, 2025: The Insights You Need from Harvard Business Review Harvard Business Review
  19. The Creativity Code: How AI is learning to write, paint and think Marcus du Sautoy
  20. Data Management Introbooks Team
  21. System Error: Where Big Tech Went Wrong and How We Can Reboot Rob Reich
  22. Machine Learning with Python Guide for Beginners: A Beginner's Roadmap Robert Francis
  23. Code Dependent: How AI Is Changing Our Lives — Shortlisted for the Women's Prize for Non-Fiction Madhumita Murgia
  24. Neural Networks for Beginners: A Journey Through the Brain of AI Steve Abrams
  25. Automate This: How Algorithms Came to Rule Our World Christopher Steiner
  26. AI 2024: Trends, Technologies, and Transformations David Borish
  27. Ultimate Python for Fintech Solutions Bhagvan Kommadi
  28. Artificial Intelligence Explained Introbooks Team
  29. Power and Prediction: The Disruptive Economics of Artificial Intelligence Joshua Gans
  30. Gods and Robots: Myths, Machines, and Ancient Dreams of Technology Adrienne Mayor
  31. Enhancing Deep Learning Performance Using Displaced Rectifier Linear Unit David Macêdo
  32. Hands-on ML Projects with OpenCV Mugesh S.
  33. The Formula: How Algorithms Solve all our Problems... and Create More Luke Dormehl
  34. Artificial Intelligence in the Modern World: Transformative Technologies and Ethical Implications: Navigating the Impact of AI on Society, Economy, and Culture David Chang
  35. Data Science and Machine Learning Demystified: Mastering Data Science and Machine Learning: Advanced Techniques and Applications Liam Stone
  36. Taming Silicon Valley: How We Can Ensure That AI Works for Us Gary Marcus
  37. Effective Machine Learning Teams: Best Practices for ML Practitioners David Colls
  38. AI Value Creators: Beyond the Generative AI User Mindset Rob Thomas
  39. The Fourth Age: Smart Robots, Conscious Computers, and the Future of Humanity Byron Reese
  40. Introducing Python: Modern Computing in Simple Packages, 2nd Edition Bill Lubanovic
  41. Python Machine Learning: Complete and Clear Introduction to the Basics of Machine Learning with Python. Comprehensive Guide to Data Science and Analytics. Alex Campbell
  42. Building, Training and Hardware for LLM AI: A Comprehensive Guide to Large Language Model Development, Training, and Hardware Infrastructure Et Tu Code
  43. Fundamentals of Software Architecture: An Engineering Approach Neal Ford
  44. Computational Thinking Peter J. Denning

Wybierz swoją subskrypcję:

  • Ponad 500 000 tytułów w cenie jednego abonamentu

  • Słuchaj i czytaj w trybie offline

  • Ekskluzywne produkcje audio Storytel Original

  • Tryb dziecięcy Kids Mode

  • Anuluj kiedy chcesz

Najpopularniejsze
50% taniej przez 4 miesiące

Unlimited

Dla tych, którzy chcą słuchać i czytać bez limitów.

39.90 zł /miesiąc
  • 1 konto

  • Nielimitowany Dostęp

  • 1 konto

  • Słuchanie bez limitów

  • Anuluj w dowolnym momencie

Skorzystaj z promocji

Unlimited na rok

Dla tych, którzy chcą słuchać i czytać bez limitów.

39.90 zł /miesiąc
  • 1 konto

  • Nielimitowany Dostęp

  • 1 konto

  • Słuchanie bez limitów

  • Anuluj w dowolnym momencie

Rozpocznij subskrypcję

Basic

Dla tych, którzy słuchają i czytają od czasu do czasu.

22.90 zł /miesiąc
7 dni za darmo
  • 1 konto

  • 10 godzin/miesięcznie

  • 1 konto

  • 10 godzin / miesiąc

  • Anuluj w dowolnym momencie

Wypróbuj

Family

Dla tych, którzy chcą dzielić się historiami ze znajomymi i rodziną.

Od 59.90 zł/miesiąc
7 dni za darmo
  • 2-3 kont

  • Nielimitowany Dostęp

  • 2–3 konta

  • Słuchanie bez limitów

  • Anuluj w dowolnym momencie

2 konta

59.90 zł /miesiąc
Wypróbuj