Lyssna när som helst, var som helst

Kliv in i en oändlig värld av stories

  • 1 miljon stories
  • Hundratals nya stories varje vecka
  • Få tillgång till exklusivt innehåll
  • Avsluta när du vill
Starta erbjudandet
SE - Details page - Device banner - 894x1036

Machine Learning System Design for Beginners: Building Machine Learning Systems. A Beginner's Guide to Design and Implementation

Längd
3T 6min
Språk
Engelska
Format
Kategori

Fakta

Designing and building machine learning (ML) systems can seem daunting for beginners, but understanding the foundational steps and principles can simplify the process. At its core, ML system design involves a series of well-defined steps that guide the transformation of raw data into valuable insights through predictive models. Here’s a beginner’s guide to understanding and implementing these steps effectively.

The first step in designing an ML system is problem definition. Clearly defining the problem you aim to solve is crucial. This involves understanding the business context, identifying the goals, and determining the type of problem—whether it is classification, regression, clustering, or another ML task. A well-defined problem ensures that the subsequent steps are aligned with the desired outcomes.

Once the problem is defined, the next step is data collection and preprocessing. Data is the backbone of any ML system, and its quality significantly impacts the performance of the models. Collect data from various sources and ensure it is relevant to the problem. Data preprocessing involves cleaning the data to handle missing values, removing duplicates, and normalizing the data. It also includes feature engineering, which involves selecting, modifying, or creating new features that enhance the predictive power of the model.

Finally, the deployment and monitoring phase ensures that the ML model is operational and continues to perform well over time. Deploy the model to a production environment where it can make real-time predictions or be used in batch processing. Implement monitoring systems to track the model’s performance and detect any drift in data distribution that might require retraining the model. Regularly update the model with new data to maintain its accuracy and relevance.

© 2024 James Ferry (Ljudbok): 9798882443640

Utgivningsdatum

Ljudbok: 9 juli 2024

Taggar

Därför kommer du älska Storytel:

  • 1 miljon stories

  • Lyssna och läs offline

  • Exklusiva nyheter varje vecka

  • Kids Mode (barnsäker miljö)

Populäraste valet

Premium

Lyssna och läs ofta.

169 kr /månad
  • 1 konto

  • 100 timmar/månad

  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

Starta erbjudandet

Unlimited

Lyssna och läs obegränsat.

229 kr /månad
  • 1 konto

  • Lyssna obegränsat

  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

Starta erbjudandet

Family

Dela stories med hela familjen.

Från 239 kr/månad
  • 2-6 konton

  • 100 timmar/månad för varje konto

  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

2 konton

239 kr /månad
Starta erbjudandet

Flex

Lyssna och läs ibland – spara dina olyssnade timmar.

99 kr /månad
  • 1 konto

  • 20 timmar/månad

  • Spara upp till 100 olyssnade timmar

  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

Starta erbjudandet