היכנסו לעולם אינסופי של סיפורים
עיון
Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort.
This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle.
By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks.
© 2021 Packt Publishing (ספר דיגיטלי ): 9781800565524
תאריך הוצאה
ספר דיגיטלי : 18 בפברואר 2021
מאות אלפי ספרים
מצב ילדים (תוכן שמתאים לקטנטנים)
הורדת ספרים לקריאה והאזנה בלי אינטרנט
אפשר לבטל בכל עת
האזנה וקריאה בלי הגבלה.
חשבון 1
גישה בלתי מוגבלת
האזנה וקריאה בלי הגבלה
קריאה והאזנה גם בלי אינטרנט
אפשר לבטל בכל עת
גלו ספרים לכל המשפחה. היכנסו יחד לתוך עולם של סיפורים.
2 חשבונות
גישה בלתי מוגבלת
שני חשבונות
האזנה וקריאה בלי הגבלה
אפשר לבטל בכל עת
עִברִית
ישראל