Lyssna när som helst, var som helst

Kliv in i en oändlig värld av stories

  • 1 miljon stories
  • Hundratals nya stories varje vecka
  • Få tillgång till exklusivt innehåll
  • Avsluta när du vill
Starta erbjudandet
SE - Details page - Device banner - 894x1036
Cover for DINO: Self-Supervised Vision Transformers Explained

DINO: Self-Supervised Vision Transformers Explained

Språk
Engelska
Format
Kategori

Fakta

"DINO: Self-Supervised Vision Transformers Explained"

"DINO: Self-Supervised Vision Transformers Explained" offers a comprehensive and rigorous exploration of one of the most influential self-supervised learning methods for visual representation—DINO—as applied to Vision Transformers (ViTs). The book opens by charting the evolution of computer vision, tracing the shift from traditional supervised and convolutional paradigms to the rise of transformer-based architectures and self-supervised learning. With a clear-eyed examination of the limitations of supervised methods and the architectural motivations behind modern transformers, readers are equipped with foundational knowledge that frames the necessity and promise of self-supervised ViTs.

Delving into the heart of DINO, the text systematically unpacks the method’s core concepts, including teacher-student architectures, self-distillation mechanics, and multi-crop augmentation strategies. Readers will find in-depth technical discussions on essential components such as multi-head self-attention, positional encoding, projection heads, and key regularization techniques. Practical engineering guidance accompanies theoretical explanations, featuring detailed advice on large-scale pretraining, distributed training, augmentation strategies, parameter tuning, and troubleshooting instability—making this work both accessible and actionable for practitioners and researchers.

Beyond the mechanics of model training, the book thoughtfully addresses the evaluation and deployment of DINO models in real-world and cross-domain scenarios—from medical imaging to satellite and industrial vision. It provides comparative studies with other self-supervised paradigms, best practices for reproducibility and open-source collaboration, and careful consideration of security, privacy, fairness, and ethical deployment. Concluding with a forward-looking view, the book identifies open research challenges and opportunities for DINO, positioning it as an essential reference for anyone seeking to understand or advance the field of self-supervised vision transformers.

© 2025 HiTeX Press (E-bok): 6610000973330

Utgivningsdatum

E-bok: 24 juli 2025

Taggar

Andra gillade också ...

Därför kommer du älska Storytel

  • 1 miljon stories

  • Lyssna och läs offline

  • Exklusiva nyheter varje vecka

  • Kids Mode (barnsäker miljö)

Populäraste valet

Premium

Lyssna och läs ofta.

169 kr /månad

7 dagar gratis
  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

Prova gratis

Unlimited

Lyssna och läs obegränsat.

249 kr /månad

  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

  • (Tidigare lägsta pris 229 kr)

Starta erbjudandet

Family

Dela stories med hela familjen.

Från 239 kr /månad

7 dagar gratis
  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

Du + 1 familjemedlem2 konton

239 kr /månad

Starta erbjudandet

Flex

Lyssna och läs ibland – spara dina olyssnade timmar.

99 kr /månad

7 dagar gratis
  • Spara upp till 100 olyssnade timmar

  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

Starta erbjudandet