Lyssna när som helst, var som helst

Kliv in i en oändlig värld av stories

  • 1 miljon stories
  • Hundratals nya stories varje vecka
  • Få tillgång till exklusivt innehåll
  • Avsluta när du vill
Starta erbjudandet
SE - Details page - Device banner - 894x1036
Cover for Transformers in Deep Learning Architecture: Definitive Reference for Developers and Engineers

Transformers in Deep Learning Architecture: Definitive Reference for Developers and Engineers

Språk
Engelska
Format
Kategori

Fakta

"Transformers in Deep Learning Architecture"

"Transformers in Deep Learning Architecture" presents a comprehensive and rigorous exploration of the transformer paradigm—the foundational architecture that has revolutionized modern artificial intelligence. The book opens by situating transformers within the historical context of neural sequence models, methodically tracing their evolution from recurrent neural networks to the self-attention mechanisms that address their predecessor’s limitations. Early chapters lay a strong mathematical and conceptual foundation, introducing key terminology, theoretical principles, and detailed comparisons with alternative architectures to prepare readers for a deep technical dive.

At its core, the book delivers an in-depth analysis of the architectural details and operational intricacies that underpin transformer models. Subsequent chapters dissect the encoder-decoder framework, decompose self-attention and multi-head attention mechanisms, and discuss design choices such as positional encodings, feedforward networks, normalization strategies, and scaling laws. Readers also encounter a nuanced treatment of advanced attention variants—including efficient, sparse, and cross-modal extensions—along with proven paradigms for pretraining, transfer learning, and domain adaptation. Rich case studies illustrate the extraordinary performance of transformers in natural language processing, vision, audio, and multimodal tasks, highlighting both established applications and emerging frontiers.

Beyond technical mastery, the book addresses the practical dimensions and responsible deployment of large transformer models. It guides practitioners through scalable training, distributed modernization, and infrastructure optimization, while confronting contemporary challenges in interpretability, robustness, ethics, and privacy. The final chapters forecast the transformative future of the field with discussions on long-context modeling, symbolic integration, neuromorphic and quantum-inspired approaches, and the profound societal implications of widespread transformer adoption. Altogether, this volume stands as both an authoritative reference and a visionary roadmap for researchers and engineers working at the cutting edge of deep learning.

© 2025 HiTeX Press (E-bok): 6610000817047

Utgivningsdatum

E-bok: 28 maj 2025

Taggar

Andra gillade också ...

Därför kommer du älska Storytel

  • 1 miljon stories

  • Lyssna och läs offline

  • Exklusiva nyheter varje vecka

  • Kids Mode (barnsäker miljö)

Populäraste valet

Premium

Lyssna och läs ofta.

169 kr /månad

  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

Prova gratis

Unlimited

Lyssna och läs obegränsat.

249 kr /månad

  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

Starta erbjudandet

Family

Dela stories med hela familjen.

Från 239 kr /månad

  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

Du + 1 familjemedlem2 konton

239 kr /månad

Starta erbjudandet

Flex

Lyssna och läs ibland – spara dina olyssnade timmar.

99 kr /månad

  • Spara upp till 100 olyssnade timmar

  • Exklusivt innehåll varje vecka

  • Avsluta när du vill

  • Obegränsad lyssning på podcasts

Starta erbjudandet