היכנסו לעולם אינסופי של סיפורים
עיון
Machine learning has revolutionized science, from folding proteins and predicting tornadoes to studying human nature. While science has always had an intimate relationship with prediction, machine learning amplified this focus. But can this hyper-focus on prediction be justified? Can a machine learning model be part of a scientific model? Or are we on the wrong track?
In this book, we explore and justify supervised machine learning in science. However, a naive application of supervised learning won’t get you far because machine learning in raw form is unsuitable for science. After all, it lacks interpretability, causality, uncertainty quantification, and many more desirable attributes. Yet, we already have all the puzzle pieces needed to improve machine learning, from incorporating domain knowledge to creating robust, interpretable, and causal models. The problem is that the solutions are scattered everywhere.
In this book, we bring together the philosophical justification and the solutions that make supervised machine learning a powerful tool for science.
The book consists of two parts:
Part 1 justifies the use of machine learning in science.
Part 2 discusses how to integrate machine learning into science.
© 2024 PublishDrive (ספר דיגיטלי ): 9783911578028
תאריך הוצאה
ספר דיגיטלי : 31 באוקטובר 2024
מאות אלפי ספרים
מצב ילדים (תוכן שמתאים לקטנטנים)
הורדת ספרים לקריאה והאזנה בלי אינטרנט
אפשר לבטל בכל עת
האזנה וקריאה בלי הגבלה.
חשבון 1
גישה בלתי מוגבלת
האזנה וקריאה בלי הגבלה
קריאה והאזנה גם בלי אינטרנט
אפשר לבטל בכל עת
גלו ספרים לכל המשפחה. היכנסו יחד לתוך עולם של סיפורים.
2 חשבונות
גישה בלתי מוגבלת
שני חשבונות
האזנה וקריאה בלי הגבלה
אפשר לבטל בכל עת
עִברִית
ישראל