היכנסו לעולם אינסופי של סיפורים
עיון
Graph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery.
Hands-On Graph Neural Networks Using Python begins with the fundamentals of graph theory and shows you how to create graph datasets from tabular data. As you advance, you’ll explore major graph neural network architectures and learn essential concepts such as graph convolution, self-attention, link prediction, and heterogeneous graphs. Finally, the book proposes applications to solve real-life problems, enabling you to build a professional portfolio. The code is readily available online and can be easily adapted to other datasets and apps.
By the end of this book, you’ll have learned to create graph datasets, implement graph neural networks using Python and PyTorch Geometric, and apply them to solve real-world problems, along with building and training graph neural network models for node and graph classification, link prediction, and much more.
© 2023 Packt Publishing (ספר דיגיטלי ): 9781804610701
תאריך הוצאה
ספר דיגיטלי : 14 באפריל 2023
תגיות
מאות אלפי ספרים
מצב ילדים (תוכן שמתאים לקטנטנים)
הורדת ספרים לקריאה והאזנה בלי אינטרנט
אפשר לבטל בכל עת
האזנה וקריאה בלי הגבלה.
חשבון 1
גישה בלתי מוגבלת
האזנה וקריאה בלי הגבלה
קריאה והאזנה גם בלי אינטרנט
אפשר לבטל בכל עת
גלו ספרים לכל המשפחה. היכנסו יחד לתוך עולם של סיפורים.
2 חשבונות
גישה בלתי מוגבלת
שני חשבונות
האזנה וקריאה בלי הגבלה
אפשר לבטל בכל עת
עִברִית
ישראל