Hlustaðu og lestu

Stígðu inn í heim af óteljandi sögum

  • Lestu og hlustaðu eins mikið og þú vilt
  • Þúsundir titla
  • Getur sagt upp hvenær sem er
  • Engin skuldbinding
Prófa frítt
is Device Banner Block 894x1036
Cover for Interpretability and Explainability in AI Using Python

Interpretability and Explainability in AI Using Python

Tungumál
enska
Snið
Bókaflokkur

Óskáldað efni

Demystify AI Decisions and Master Interpretability and Explainability Today

Book Description

Interpretability in AI/ML refers to the ability to understand and explain how a model arrives at its predictions. It ensures that humans can follow the model's reasoning, making it easier to debug, validate, and trust.

Interpretability and Explainability in AI Using Python takes you on a structured journey through interpretability and explainability techniques for both white-box and black-box models.

You’ll start with foundational concepts in interpretable machine learning, exploring different model types and their transparency levels. As you progress, you’ll dive into post-hoc methods, feature effect analysis, anchors, and counterfactuals—powerful tools to decode complex models. The book also covers explainability in deep learning, including Neural Networks, Transformers, and Large Language Models (LLMs), equipping you with strategies to uncover decision-making patterns in AI systems.

Through hands-on Python examples, you’ll learn how to apply these techniques in real-world scenarios. By the end, you’ll be well-versed in choosing the right interpretability methods, implementing them efficiently, and ensuring AI models align with ethical and regulatory standards—giving you a competitive edge in the evolving AI landscape.

Table of Contents

1. Interpreting Interpretable Machine Learning 2. Model Types and Interpretability Techniques 3. Interpretability Taxonomy and Techniques 4. Feature Effects Analysis with Plots 5. Post-Hoc Methods 6. Anchors and Counterfactuals 7. Interpretability in Neural Networks 8. Explainable Neural Networks 9. Explainability in Transformers and Large Language Models 10. Explainability and Responsible AI

Index

© 2025 Orange Education Pvt Ltd (Rafbók): 9789348107749

Útgáfudagur

Rafbók: 15 april 2025

Veldu áskrift

  • Yfir 900.000 hljóð- og rafbækur

  • Yfir 400 titlar frá Storytel Original

  • Barnvænt viðmót með Kids Mode

  • Vistaðu bækurnar fyrir ferðalögin

Vinsælast

Unlimited

Besti valkosturinn fyrir einn notanda

3290 kr /mánuði
3 dagar frítt
  • 1 aðgangur

  • Ótakmörkuð hlustun

  • Yfir 900.000 hljóð- og rafbækur

  • Engin skuldbinding

  • Getur sagt upp hvenær sem er

Prófaðu frítt

Family

Fyrir þau sem vilja deila sögum með fjölskyldu og vinum.

Frá 3990 kr/mánuði
3 dagar frítt
  • 2-6 aðgangar

  • 100 klst/mán fyrir hvern aðgang

  • Yfir 900.000 hljóð- og rafbækur

  • ‎Engin skuldbinding

  • Getur sagt upp hvenær sem er

2 aðgangar

3990 kr /á mánuði
Prófaðu frítt